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PREFACE

These notes grew out of M. Sc. lecture courses given by the first named

author at the Mathematics Institute (University of Warwick) in 1976 and 1977. To

be more precise, the material presented here is concerned only with those parts of

the courses which are not to be found in well known texts, together with additional

material, organised by the second named author, which was not presented in the

above courses.

The M. Sc. audience was expected to be familiar with measure and integration

theory and it was assumed that students had had at least some contact with elemen-

tary functional analysis including Hilbert space theory. The foundations of the

course, which were discussed in an informal tutorial fashion, consisted roughly of

the following topics: measure-preserving transformations, recurrence, Birkhoff's

and von Neumann's ergodic theorems, conditional expectation, increasing and de-

creasing sequences of a-algebras and the associated Martingale theorems, informa-

tion, entropy and the Shannon-McMillan-Breiman theorem. Students were expected

to read these topics as an integral part of the course and were advised to refer to

the relevant sections of [H] , [R. 21, [W. i] (to which we would now add [ P.11).

Readers of these notes who are unfamiliar with these foundations are similarly

advised.

We offer our thanks to M. Keane and M. Smorodinsky for a number of con-

sultations concerning Chapter III. We would also like to record our gratitude to

Klaus Schmidt and Peter Walters for helpful critical comments concerning an earlier

draft of these notes.





CHAPTER I: INTRODUCTION

1. MOTIVATION

The problems discussed in these notes are motivated by the classical iso-

morphism problem of ergodic theory, which has received much attention since the

introduction (by Kolmogorov) of entropy into the subject, and especially since

Ornstein's celebrated solution for Bernoulli automorphisms. According to

Kolmogorov, two Bernoulli automorphisms S, T (shifts on product spaces
00 .0

(X, m) = 14 (X0, m0) and (Y, p) = 11 (Y0 , po), respectively, where (X0 , mo )
-00 -00

and (YO, po) are finite probability spaces) are isomorphic only if their entropies

(- Z mo (i) log mo (i) and - Z po (j) log po (j)) coincide. Ornstein's result
iEX0 jEY0

([O. 11, [0.21) complements this statement: if two Bernoulli automorphisms have

the same entropy then they are isomorphic. This means that there is an essentially

invertible measure-preserving transformation 0 from almost all of X onto almost

all of Y satisfying (µS = TO a. e. Writing 0 (x) = (0n(x)) in terms of component

functions 0n, we see that 0n(x) = 0o (Snx) and 0 is determined by 00 :X-+ Yo.

The present, 4)
0
(x) , may depend on the entire past and future of x; this is not

satisfactory from the point of view of communication and coding.

We have indicated that isomorphisms, which preserve only the most basic

structures of measure theory, may be too weak for applications. It is therefore

appropriate to ask for measure-preserving transformations which respect struc-

tures other than just measure e. g. a sub-v-algebra which represents the 'past'

or a partition (finite or countable) which represents the 'state space' of a

stationary stochastic process. Also, finite state processes have natural topologies

so that it is natural to consider continuous maps and homeomorphisms between

them. These considerations lead us to the concepts of regular isomorphism,

quasi-regular isomorphism, finitary code, block code, finite equivalence, almost

topological conjugacy and topological conjugacy. A more detailed preview of the

ideas involved in these will be given in the final section of this chapter.
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In many of the above classifications an information function can be used as an

invariant. Indeed, the question of the extent to which information, as opposed to

entropy, can be used in classification problems is a principal motivation for many

of the results presented in these notes.

2. BASIC DEFINITIONS AND CONVENTIONS

As is usual in measure theory, all measure theoretic objects which are equal

almost everywhere are identified throughout these notes. Thus the qualification

'almost everywhere' is often omitted. We always require sets and functions to be

measurable, even when this is not explicitly specified. (X, (3, m) or a similar
triple always denotes a probability space. If d C 03 is a sub- a-algebra and (

n
is a sequence of sub-a-algebras such that nU (I generates (I then we write

t C%.
n

For probability spaces (Xi, 03i, mi) (i = 1, 2) , a measure-preserving trans-

formation 0 from almost all of X, onto almost all of X2 is called a homomor-

phism and in keeping with the above convention we write (: Xf - X2. Measure-

preserving means 07'63, C 031 and m 1 (Q7 1 B) = m2 (B) for all B E 032. If

$ : X1 ~X2 is a homomorphism, (X2, 032, m2) is called a homomorphic image or

factor of (X1, 031, m1) and (X1, (A, ml) an extension of (X2, (B2 , m2) . ti is

called an isomorphism if there is a homomorphism ill : X2 -+ X1 such that

IPO = idx and ¢?P = idx (a. e.). A homomorphism (isomorphism) from a
1 z

probability space to itself is called an endomorphism (automorphism). An endo-

morphism T of (X, 03, m) is ergodic if T-1 B=B, B E 03 implies mB = 0 or 1.

A probability space which is isomorphic to a subinterval of [0, 1] (with

Lebesgue measure) together with a countable number of atoms is called a Lebesgue

space. All of our spaces will be Lebesgue. This is not a very restrictive condition;

for instance a complete separable metric space together with a complete Borel

probability always defines a Lebesgue space. The main reasons for imposing this

condition are that Lebesgue spaces are separable and that the following holds (see

[R.11)

Let (Xi, (131 , m1) and (X2, (B2 , m2) be Lebesgue spaces. Every a-

algebraic homomorphism : 032 - 031 (F (BC) = ((b B) C, b (U B) = U (Bn n n n
MI OD B) = m2 B for all B, Bn E 032 and Ii (X2) = X1) is realised, essentially
uniquely, by a homomorphism Xi "'' X2 in the sense that 4) B = 0-1 B for all
BE032.
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For i = 1, 2 let T, bean endomorphism of (X
1
., (B .

1
, m

1
.) . A homomor-

phism 0 : X1-' X2 satisfying ¢ T1 = T2 4 is called a homomorphism of Ti to

T2; T2 is then a factor of T, and T1 anextension of T2. (We write

Ti t. T2.) If such a homomorphism is an isomorphism, then T1 and T2 are

said to be isomorphic or conjugate.

Let T be an endomorphism of (X, 03, m). There is a 1-1 correspondence

between T-invariant sub-a-algebras ct
(T-'

(i C (t C (B) and factors of T:

If T' : (X', C, ml)- (X', (B', m') is a factor of T by 0 then
T -1(_'C) C W ' (B' C (B and, on the other hand, if T-1 a C a C 03 then there

exists a factor (by some ') V: (X', (13', m') -+ (X', 03', ml), unique up to isomor-

phism and called the factor with respect to (t, such that (t = 4 1(f3'. Moreover

there is an automorphism T of a (Lebesgue) space (X, 03, m), unique up to

isomorphism and called the natural extension of T, such that T is an extension

of T (by 0, say) and Tny 103 t 03 (see [ R. 31).

If T is an automorphism of (X, 03, m) , an invariant sub-a-algebra Q,

with TnCt t (B is called exhaustive. An automorphism of a Lebesgue space together

with a preferred exhaustive sub-a-algebra is called a process.

3. PROCESSES

Let X0 be a finite or countable set, and let X = nII
oo

X
n

where X
n

=X0
=-

for all n E Z. The shift T is defined (Tx) n = xn+l for x = (xn) E X. A

cylinder is a set of the form

[io, i1, .... iIk

= {x=(xn)EX:xk=io. xk+1=i1, ..., xk+t=i11

where k, 1 E Z and 12: 0. If k = 0, we sometimes omit this superscript. Let

03 be the a-algebra generated by all cylinder sets. Clearly T-103 = (B. If m is
a T-invariant probability on (X, 0) then (X, 03, m, T) , or simply T, is called

a countable or finite state process according to the cardinality of X0, the state

space.

Consider an automorphism T of a Lebesgue space (X, 03, m). A finite or
00

countable (measurable) partition a is called a generator if U Tn a generates
co ri=-O

03, If 03 is even generated by nU0 T-na, a is called a strong generator. The

state space X0 of a countable or finite state process defines a generator called the

state partition: {[ii : i E Xo ). In fact there is no significant difference between

3



automorphisms with specified generators and (countable or finite) state processes,

as the exercise below shows. This rests on the fact that we are restricting attention

to Lebesgue spaces, since we need the following: If (An) is a sequence of partitions

of a Lebesgue space (X, (R, m) such that UI generates 63, then there is a null
n n

set N such that for all x, y E X - N there exist n and B E with x E B,
n

yEX-B (see [R.1]).

Exercise. Let T be an automorphism of a Lebesgue space (X, (B, m) and

let a = {A, , AZ , ... } be a finite or countable generator. Let
00

X0 = { 1, 2, ... } have the same cardinality as a and define X' = 11 X0 . Define
00

a probability µ on X' by

A [i0 , it, ..., ilJ = m(Ai n T_' A. fl ... fl T-1 Ai ) .
o t l

Note that the shift S preserves µ, and prove that S and T are isomorphic.

Given a countable or finite state process (X, (2, m, T), let Ct be the 'past'

sub-a-algebra generated b y the cylinders [ i0 , ... , i1 ] k with k ? 0. Then (t

is T-invariant and exhaustive. d is called the standard past, and (X, 03, m, T)

is understood to have d as its preferred exhaustive sub-a-algebra.

4. MARKOV CHAINS

In this section we list some definitions and facts concerning non-negative

matrices and Markov chains. The basic references are [S'] and [F].

Let A be a non-negative k X k matrix. A is irreducible if for each pair

(i, j) , 1 < i, j < k, we can find n ? 1 such that the product An has

An( i, j) > 0. The period of (a state) i (1 < i < k) is the highest common factor

of n ? 1 with An(i, i) > 0. If A is irreducible, this is independent of the state

chosen and is called the period of A. A is called aperiodic if (it is irreducible

and) it has period 1; this is equivalent to requiring An > 0 for some n ? 1.

A non-negative matrix is stochastic if all its row sums equal 1. A probability

vector is a strictly positive vector with sum 1. Given an irreducible stochastic

k X k matrix P, there is a unique probability vector p with pP = p. Hence we
00

obtain a finite state process (X, 03, m, T) by taking X = I 11, 2, ..., k } and
00

defining

4



m[io, it, ..., l1}n =P(i0)P(io, ii)P(11, i2) ... P(1-1' L

(X, G, m, T) , together with its state partition, is called the Markov chain defined

by P. The (shift) automorphism T and the measure m are also called Markov.

If P has identical rows and pP = p as above, the unique probability vector p is

easily seen to be the one giving the rows of P so that m is the product measure

obtained from t h e measure onI i . . . . . k) which assigns p(i) to i. In this

case the process, shift and measure are called Bernoulli.

If P is an irreducible stochastic k X k matrix of period t and p is the
unique probability vector with p P = p then for each pair (i, j) , 1 < i, j < k,
there exists 0 to < t-1 such that lim Pto +nt(i, j) = tp(j) and Pm(i, j) = 0

n- oD
if m is not of the form to + nt. This shows that all Markov automorphisms are

ergodic. The convergence of PtO+nt(i, j) is exponentially fast.

We will need:

Perron-Frobenius Theorem [S'i. Let A be a non-negative irreducible

matrix with period t. Then

(i) there is a positive eigenvalue b with a corresponding strictly positive

eigenvector

(ii) I is a simple eigenvalue (i. e. it is a simple root of the characteristic

equation of A) ;
i th(iii) GW , i = 0, 1, ..., t-1 are eigenvalues where W is a primitive t

root of 1, and for all other eigenvalues (, I of < I,;

(iv) if r = (r1, ... , rk) is a strictly positive vector then

(Ar). (Ar).
min i 1 } < max 1

1 }
, rr1

1

with equality on either side implying equality throughout. In particular Ar = txr,

r strictly positive, implies that a = 1.

5. REDUCED PROCESSES AND TOPOLOGICAL MARKOV CHAINS

We shall consider all finite state shift spaces, whenever necessary, as
00

topologized in the following natural manner: If X = [1
0
Xo where Xo is a finite

set, we give X0 the discrete topology and X the product topology. Then X is
compact and metrizable and the shift is a homeomorphism. The closed-open

5



subsets of X are the cylinder sets and finite unions of these. Cylinders form a

base for the topology of X and so, generate the Borel or -algebra. Moreover, X is
zero-dimensional (it has a base consisting of open-closed sets).

Suppose (X, 03, m, T) is a finite state process. Then 03 is the Borel

a-algebra. Let X' be the support of m i. e. X' = X - U where U is the largest
open null subset of X. X' is T-invariant. We denote by 03', m', T' the restric-
tions of 03, m, T to X'. X' is compact and zero-dimensional and T' is a homeo-
morphism. (X', 03', m', T') is the reduced process. Measure theoretically

there is no distinction between a finite state process and its reduced process and,

since supporting measures are more convenient for topological considerations, we

shall always assume that finite state processes are reduced.

Suppose A is a 0-1 irreducible k X k matrix. A defines a closed, shift-
00

invariant subset X of I 1, 2, ... , k } :

X= { x= (x n) : A(xn, xn+l) = 1 for all n } .

X, together with (the restriction of) the shift, is called the topological Markov chain

or subshift of finite type defined by A. If P is a k X k (irreducible) stochastic
matrix compatible with A (i.e. P(i, j) = 0 iff A(i, j) = 0) , the Markov measure

defined by P has X as its support. Our assumption that finite state processes are

reduced means that we regard Markov measures as being defined on their supporting

topological Markov chains. The period of a topological Markov chain is defined

according to the period of its defining matrix A.

The 0 -1 matrix A may be viewed as a matrix of transitions: we

have k vertices and a transition from i to j is allowed iff A(i, j) = 1. The

topological Markov chain given by A is the space of all doubly infinite sequences of

(allowable) transitions. From this point of view, there is no reason to restrict

ourselves to 0-1 matrices; given an irreducible non-negative integral k X k

matrix A' we again have k vertices and A'(i, j) specifies the number of paths

from i to J. The topological Markov chain now consists of all doubly infinite

sequences of directed paths, with the shift transformation. This, however, is no

more general than the 0-1 case since we may index with the directed paths a 0-1

matrix (transition from path a to path b is allowed iff b starts at the terminal

vertex of a) which gives an equivalent (topologically conjugate) topological Markov

chain in the sense that there exists a homeomorphism between the two spaces which

conjugates the shifts. We shall work with 0-1 matrices, resorting to general

6



non-negative matrices only to save space in examples.

[A. M. ] contains a beautiful exposition of topological Markov chains.

6. INFORMATION AND ENTROPY

In this section we give a brief review of the basics of information and entropy

theory. Details may be found in [B], [R. 2] and [ W.1], but [P. 1] is perhaps the

best reference for our purposes.

If a is a countable partition of the (Lebesgue) space (X, (f3, m) and

C G is a sub-a-algebra, the conditional information of a given e is

I(a10) _- Z XAlogm(AIk)
AEa

All logarithms are to the base e. H(a 1 ) = fl( a I (2) dm is the conditional
entropy of a given (. If 0 is the trivial a-algebra consisting of sets of

measure 0 and 1, we have, respectively, the information and entropy of a, I( a)

and H( a) . Note that I(a le) 0 and that H(a 1() = 0 (or I(a I C') = 0) iff

a consists of sets in e.
For a countable partition a, we shall use the same symbol to denote the

a-algebra generated by the partition, the distinction being clear from the context.

For partitions a, [ we put a " j3 = (A n B : A E a, B E G I. We use similar
notation for the refinement of any number of partitions. When (t , e2, ... is a

00
sequence of o'-algebras, " ( denotes the a-algebra generated by their union.

n=1 n
The basic identities for information and entropy are:

I(a"/IY) = I(alII"'M + I(IIy)

H(a">I) = H(alU"y)+ H(4))

for countable partitions a, A, y. These are easily verified. If ( C 63 is a
a-algebra we can find (finite) partitions yn such that y t e, since we are in a
Lebesgue (therefore separable) space. Now using y

n
in place of y in the basic

identities, taking limits, and using the increasing Martingale theorem we obtain,

I(a"MIe) =I(aIA"e) + I(Ple),

H(a"AIe) =H(al/l"e)+ I1(31(2)

for countable partitions a, a and a sub-a-algebra 0. From these identities we

7



seethat I(aje)2!t-I(PIO, H(ake)? H(i:IC) when Cl? 1S (i.e. when aD
as a-algebras generated by the partitions). That H(a I a) < H( aIG`') when Ct D C

may be proved with the aid of Jensen's inequality, but the corresponding inequality

for information is not generally true.

Suppose Ct, ( are sub-a-algebras and let an t d, An t Ct where an, An
are finite partitions (for n = 1, 2, ...). Then

1(0mle) -` I(n"f3 mle) =I(anIC) +I(I6 In"s)m

and, letting n-.oo ,

lim I(anI() +I(/ ?
n- o0

so that, since P C Ct ,
m

lim I(anle) > I(bmh).
n-+oo

Letting m -+ 00,

lim I(d
n

lC) > lim I((m 10) .
n-+oo m-+oo

Clearly the reverse inequality is also true, so that the definition

I((tIC) = limI(an le) for a
n

t a
nyo

is unambiguous. Note that lim I(a In
exists in IR U { o } as I(a

n
I C) are

n-.oo
increasing (for increasing n) . Again we define H(CL I C) = f I(d I C) dm. It

should be clear that the following sharpened versions of the basic identities are

valid:

I(a1 "a2 10) =I(a2ia1 "C) +I(a1IC),

H(a1 "a2 Ia) =H(a2I(t1 "G) +H((i1 IC)

for sub-a-algebras Ct 1, Ct2 and e. Evidently, H (d 1 I C) = H(CL 1 " CL2 I C) when

Ct2CC and H(LIe) =0 iff CLCC. When

I(LIa1) :5I(aIC2) since

I(CIe2) =I(a "e1IC2) =I(C1IC2) +I(alei)

8



If T is an endomorphism of (X, a3, m) and a is a countable partition
with H( a) < 00, then h(T, a) =H( a I " T_ c) is called the entropy of T with00 l

i=1
respect to a. By the Shannon-McMillan-Breiman theorem,

1 n-i -iJim
H( " T-1 a) =h(T, a) (when H(a) < 10).

noon i=0

The entropy of T is defined by

h(T) = sup{h(T, a) : a is a countable partition with H(a) < 0O } .

Since we are working with Lebesgue spaces,

h(T) = sup { h(T, a) : a is a finite partition } .

If a are such that H( a) < 00 and an
t 63 then h(T) = lim h(T, an

). If
n n

o (with H( a) < 00) is a strong generator or, when T is an automorphism, a

generator, then h(T) = h(T, o) . The last two results are the main practical

tools for the calculation of entropy.

If 0 is a homomorphism from (X1 , 631, ml) to (X2, (332 , m2) then

I( a I C) ° q, = I(q 1 alq () whenever a is a partition of X2 and e C 632
is a or -algebra. It follows that H(a 10) = H(4-1 a I cl 1 e) and that h(T1) ? h(T2)
when T2 is a factor of T1. Thus, h(T1) = h(T2) when T1 and T2 are isomor-

phic.

Having established entropy as an isomorphism invariant, we conclude the

section by listing some results as exercises.

Exercise. Let (X, 63, m) be a Lebesgue space and let ( C 63 be a

or-algebra. Show that there exists a sequence of finite partitions a
n

with a
n

t Ct.

Exercise. Let T bean endomorphism of (X, 63, m) . Show that

h(Tn) = n h(T) for n = 0, 1, 2, ... and that h(T-1) = h(T) when T is inver-
tible.

Exercise. For i = 1, 2, let T. bean endomorphism of (X., 63,, m.).
Show that h(T1 X T2) = h(T1) + h(T2) .

Exercise. If T is the Bernoulli automorphism given by the probability
n

vector (p(1) . ... , p(n)) , show that h(T) p(i) log p(i).
i=1

9



Exercise. If T is the Markov automorphism given by the irreducible stochas-

tic matrix P with invariant probability vector p (p P = p), show that

h(T) p(i) P(i, j) log P(i, j)
i, j

Exercise. Let a, A be finite partitions of (X, a3, m) . Show that

H( a '' /3) = H( a) + H(/3) iff a and A are independent (i. e. iff m(AnB) =m(A)' m(B)

forall AEa, BE/)

Exercise. Let a, IS, y be finite partitions of (X, (B, m). For B E IS denote
by (B, mB) the normalization of the restriction of m to B with

In (E) = mmEB) B)
. By using the last exercise on each of (B, mB) , show that

B

y)=H(o-1/3) iff
m(AnBnCmAnB for all A E a, BEm(BfC) m(B)

CEy.

7. TYPES OF CLASSIFICATION

As we have already indicated, these notes are mainly concerned with various

classifications of processes (in particular, Markov chains) and of topological

Markov chains. This section is intended as a preview of the basic definitions

of these classifications.

Let (X,, 63,, Q , m., T.) , where T_' d C (t C 03 and Tn(t. t Q3 , be
1 1 i 1 1 1 1 i i 1 1 i

processes (i = 1, 2). An isomorphism T1 4+ T2 is said to be regular if

4 1 d2 C Tp(t 1 and 0 (t 1 C TIP d2 for some integer p >_ 0. The idea is that the

code ¢ (and its inverse) should depend, perhaps on the entire past but, only on a

bounded amount of the future. The main result for regular isomorphisms is that the

information functions I( (t, ITI' (t,) and I(a2 I T2-'a2) ° ¢ are related by an

equation. We exploit this equation in various ways to obtain invariants. The same

equation holds, in a slightly weaker form, for quasi-regular isomorphisms. Quasi-

regular isomorphisms are defined by insisting that the pasts of the processes should

not be too distant from each other in a sense we shall make precise later.
00 00

If (X, 03 , m, T) and (X', a3', m', T') , X = IIXo and X'= II X0' , are-°o -co

countable state processes, a homomorphism T T' is completely

determined by a function 00 : X - X (0 (x) _ {¢0 (Tnx) I). For a point x E X
the present, 00 (x) , may depend on the entire past and future of x. If we require

for each x E X that 00 (x) is determined by a finite section of x, we have a

10



finitary homomorphism. For a finitary homomorphism $, we may define the

code-length I : X - N where l (x) indicates how far into the past and future we

need to go to determine ¢o (x) ; 0 is said to have finite expected code-length if

f I dm < 10. An isomorphism is finitary if both 4 and 0-1 are. Keane and

Smorodinsky have improved Ornstein's result by showing that entropy is a complete

invariant for finitary isomorphism of Bernoulli processes. Chapter III is devoted

to this result and to an information obstruction to its refinement to finitary iso-

morphisms with finite expected code-lengths.

A block-code is a finitary homomorphism between two finite state processes

for which the present depends on a bounded amount of the past and the future (i. e.

for which the code-length I is a bounded function). A block code may be regarded

as a continuous homomorphism. The block isomorphism problem is, thus, simul-

taneously measure-theoretic and topological.

The classification of topological Markov chains with respect to topological

conjugacy is discussed in Chapter V. The basic invariant, topological entropy, is

far from complete. In fact there are examples which are not topologically con-

jugate to their inverses. There is also a problem (Williams's problem) in for-

mulating topological conjugacy as a manageable algebraic equivalence relation of

defining matrices. A more satisfactory picture emerges when we consider weaker

equivalence relations: topological entropy is a complete invariant for finite

equivalence, and topological entropy and period together completely characterize

almost topological conjugacy.

11



CHAPTER II: THE INFORMATION COCYCLE

1. REGULAR ISOMORPHISMS

1. Definition. Two endomorphisms S1, S2 are said to be shift-equivalent if

there exist homomorphisms Sl S2 and S2 Sl satisfying SP,

1/i = S2p, for some positive integer p.

2. Definition. A regular isomorphism between two processes (Xi' (Bi' ai'

mi, Ti) ( i = 1, 2) is an isomorphism T1 t T2 such that W 1 a2 C Tpa'tat,
$ a 1 C Tpa2 for some positive integer p.

The basic result connecting regular isomorphism and shift-equivalence is

3. Proposition [F. P. ]. Let (X., 12 a m., Ti) be processes and let

S. Xi " Xi be the factor endomorphism of Ti with respect to ai (i = 1, 2).
T1, T2 are regularly isomorphic iff S1, S2 are shift-equivalent.

IT2
Proof. Let T1 .... S1, T2 -+ S2 be the factor homomorphisms. Suppose T1 ,

T2 are regularly isomorphic i. e. suppose there is T1 P T2 and p > 0 with
T1 1 DP-1(32 and Tpa2 DFa1. Put (=PTp, t/1 =P 1T2. Then l1a2 C a1
and, considering the (T Q -algebraic homomorphism ¢ 1 : a2 ' a1 and using the fact
that the spaces are Lebesgue, we obtain a homomorphism X1-'Xg' with

rz 4'x 1 and 1'S1 = S2 0'. Similarly 'P_1 a 1 C a 2 and we obtain

4/1' : X2 " X 1 with 7T 1 P _ 'rz and 'S2 =Sly'. Since ° W = T,
2p

and

° t// = T22p, it follows that S12p 0' S22p and S1 , S2 are shift-
equivalent.

For the converse, suppose S1 t S2, S2 S1 satisfy t/i' ° 0' = S, P,

0' ° S. Extend 0', t//' to homomorphisms T1 T2, T2 - T1. (See the

following exercise 4.) Now 41 0 0 extends `/I' ° 4' = S1 and, by the uniqueness

in 4, t// ° 0 = T1 . Similarly, 0 ° t/.' = T2p. Since T1, T2 are automorphisms,

4, ty are isomorphisms. Moreover, $a 1 = T2pt/i-1 a 1 C T2pa2 and
0-1 a2 C a 1 C Tipa 1. Hence T1, T2 are regularly isomorphic. //

12



4. Exercise. Let Ti be automorphisms of the Lebesgue spaces

(Xi, Gi, mi) with exhaustive sub-a-algebras Ui (i = 1, 2). Suppose

U : (t 2 ' (t 1 is a a-algebraic homomorphism such that T11 U(A) = UT21(A)

for all A E U2. Show that U can be uniquely extended to a a-algebraic homo-

morphism U : (2 -* (B 1 such that Tl 1 U(B) = UT21(B) for all B E (B2. Deduce

that there is a unique homomorphism T1 T2 which extends U in the sense that

$-1(A) = U(A) for all A E a2.

5. Definition. Let (X, 12, m) be a probability space with an endomorphism

T. A coboundary is a function of the form f ° T - f, where f is a real valued

function. f ° T - f is an Lq -coboundary if f E Lq (1 < q < oO) . Two real valued

functions are cohomologous if they differ by a coboundary and Lq-cohomologous if

they are in Lq and they differ by an Lq-coboundary.

6. Definition. Let (X, G, d, m, T) be a process. IT = I(U I T-1 U) is
called the information cocycle of the process.

The following theorem provides the main tool for obtaining invariants of

regular isomorphism.

7. Theorem. Let ¢ be a homomorphism from the process (X1, (g1 , U1 ,

m1, T1) to the process (X2, (Bz, (12, m2, T2) such that 9,_1 d2 C T1p(t1. Let

1 q < °O. If IT , I((t 1 I T1 p 1 U2) E Lq(X1) (reap. are finite a. e.) then
I E Lq(X2) (reap. is finite a. e.) and I I

2

° $ are Lq-cohomologousTI'
(reap. are cohomologous). When 0 is a regular isomorphism then IT E Lq(X1 )

1

(resp. is finite a. e.) if and only iff IT E L'1(X2) (reap. is finite a. e.) and, in
z

this case, I
Tl

and I
T2

° 0 are Lq-cohomologous (resp. are cohomologous).

Proof. First note that if 0 is a regular isomorphism then

(t 1 Z) T1-p 1 a2 D T1-2p(t 1 so that (see section 6 of Chapter I)

I((t1 ITi-pOl(I2) :5 I(U1IT1-2pU1) =IT1 +IT1 ° T1 +... +IT1 ° T12p-1

and I(U 1 I T1' (2) is in the same Lebesgue class as IT . Hence it is
1

sufficient to prove the first part of the theorem.

We have

I(U1
IT1-p-1O i(t2) =I(U1 " Ti-'U1 jT1-p-1O

'Uz)

13



=I(T1-1Cti ITi-p-10-1(12) +I(a1ITi-iU1) and

I(a1
IT1-p-10-1

d2) = I(Cf1 v T1-po lQ'2 IT1-p-1O 1Q'2)

= I(T1-PO1C'2
ITl-p-iO'a2) + I(ff IT1-po l(t2)

so that I + g o T1 = g + I

2

0 0 ° T1p where g = I(U 1 I T1-p$ 1 Ct2) . Hence I

is finite (resp. in Lq) if T , I( Cf 1 I T1-pO 1 (f2) are finite (reap. in Lq). Since
1

Z,2 ° 0 ° Tip and IT2 ° 0 are cohomologous (Lq-cohomologous if IZ,2 E Lq) , the

theorem follows. //

8. Corollary. Let T. be endomorphisms of (X., 03, m.) (i = 1, 2) and
1 a i 1

let T1 t T2. If I(031 IT,-101), I(O3 10 'G32) E Lq(X1) (resp. are finite a.e.)
then I(032 IT2-1(B2) E Lq(X2) (resp. is finite a.e.) and I(61 IT1-1(B1).

I( 032 I T2
1032) - 4 are Lq-cohomologous (resp. are cohomologous) .

Proof. Consider the natural extensions of T1, T2 and apply the theorem

(with p = 0) . //

If T is an endomorphism of (X, 03, m), we define a linear isometry

UT : L2 (X) - L2 (X) by f I-+ f ° T. UT is unitary if T is an automorphism. If,

in 7, 0 is a regular isomorphism and one of the information cocycles is in L2 then

we have a cocycle-coboundary equation f = f' + UT (g) - g where f, f', g E L2 (X1) .
1

Thus, the analysis of the equation may be treated as a Hilbert space problem.

2. UNITARY OPERATORS AND COCYCLES

Throughout this section H will be a Hilbert space and U a unitary operator

on H. We wish to investigate cocycle-coboundary equations u = v + Uw - w where

u, v, w E H.

9. Definition. U, v E H are said to be cohomologous with respect to U if

u = v + Uw - w for some w EH.
to 0.

u E H is called a coboundary if it is cohomologous

For x E H we put Sn(x) = x + Ux + ... +U n-1x and
when this limit exists.

Q2 (x) = lim In I1S (x) II
n-+oo

n

10. Proposition [F. P. J. Let u, v E H be cohomologous (with respect to

U) . If a2 (u) exists then 02 (v) also exists and v2 (u) = 02 (v) .

14



Proof. Denote by P the orthogonal projection of H onto the U-fixed vectors,

ix E H : x = Ux }. Suppose u = v + Uw w, WE H. Successively applying U to

this equation and summing,

Sn(u) = Sn(v) + Un w -w.

Hence

Ilsn(u) II2 = IISn(v) IIZ+IIUnw_w11,+2Re(Sn(v), Unw -w)

IISn(v) II2+IIUnw-WII2 +2(Re(U-iv+...+U-nv, w)-2(Re(v+...+i}1 v,w).

The result follows by noting that n II Un w - w II2

n

II w II
2 - 0 and that, by von

Neumann's ergodic theorem,

n

(U-i v + ... + U v) - P(v) and
1n(v +... +Un-ly)- P(v). //

11. Proposition. x E H is a coboundary iff the sequence IIx+Ux+...+UnxII

(n=O, 1, ...) is bounded.

Proof. If x = Uy - y, then IIx + ... +UnxII- IIUn+ly _ y II
-` 211y II and the

sequence is bounded. Now suppose there exists k E IR such that

lI x + Ux + ... +UnxII k for n = 0, 1, ... . Let S be the set of all convex com-

binations of i S (x)
n

n
S=

{fix+X1SI(x)

+... + nSn(x) :ai? 0, Z Xi=1, n=0, 1, ... }.
i=0

Let S be the closure of S in the weak topology of H. S is convex and, as it is

contained in the weakly compact set { z E H : II z II `- k } , it is weakly compact.

Moreover, S is invariant under the continuous affine map z H x + Uz. By the

Schauder-Tychonov theorem this map has a fixed point in S i. e. there exists

y E S with y = x + Uy, and x is a coboundary.

We now need some standard facts from the spectral theory of unitary operators,

which we list here. We use the notation of the Appendix of [P. 11 where the details

may be found. (U : H - H is a unitary operator.)

(i) For x E H we denote by Z(x) the closure of the linear span of

{Unx : n C Z } . Z(x) is called the cyclic subspace generated by x. Both Z(x)
1

and its orthogonal complement Z(x) are invariant under U.
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(ii) For each x E H there exists a unique finite positive Borel measure x

on the circle K = {X E C : I X I = 11 such that

Unx, x) = Xn d4X) for all n E Z (Herglotz's theorem).

x is called the spectral measure of x.

(iii) If y E Z(x) then y« x, with y x iff Z(y) = Z(x). For each finite

positive Borel measure µ << x there exists y E Z(x) with y = µ. If y, z E Z(x)
then Z (y) 1 Z (x) iff y 1 z.

(iv) U I Z(x) is unitarily equivalent to M on L2 (x) where the multiplication

operator M is defined (Mf) (X) = X f(X) , f E L2 (x) . The Hilbert space isomor-

phism (i. e. bijective linear isometry) effecting this equivalence is obtained by

extending the map Unx H An, n E Z. In particular, x corresponnfls to the constant

function 1. If y E Z(x) , y corresponds t o a function a(X)(d )2 where I a l = 1.

(v) If u, v E H and u = v then there exists a unitary operator W : H -+ H

such that WU = UW and Wu = v. W is obtained by composing the two maps con-

jugating U IZ (u) and U IZ(v) to M on L2 (a), and extending.

12. Theorem [ P. S. 1. Suppose the unitary operator U : H - H has no fixed

vectors other than 0 and let u, v E H. The following are equivalent:

(a) There exists a unitary operator W : H -+ H such that WU = UW and

u= Wv+Uw-w for some w E H.
(b) For some measure (and therefore all measures) P on the circle K

satisfying P» u, v and P(1) = 0 (i. e. the point i is not an atom) ,

du z dv \z 2 1 < 00dPfK[ (d I - ( I 1 IX-1 I2 P

13. Remarks. (i) For P satisfying P» u, v and P(1) = 0
J(P) = fK[

\ /
2 - rd_6 )2 Jz

dP is independent of P: If or »P » u, v
J 1`\ /I IX-lIz

and 9(1) =P(l) 0, it is easy to see that J((T) = J(P) . For arbitrary pl , p2

with P,, P2 > u, v and Pl (1) = P2 (1) = 0, PI + P2 » PI, P2 and so

J(P1) =J(P1 +P2) =J(P2)
(ii) The condition that U has no fixed vectors other than 0 guarantees that

w(1) = 0 for all w E H. More generally, if w (a) > 0 for some w E H and
G EK then X { a } EL2 (w) is non-trivial, M(X { a } ) = a X { a } and, taking
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preimages with respect to the canonical map of Z (w) onto L2 (w) , we see that a

is an eigenvalue of U.

Proof of 12. Suppose (a) holds. Since Wv = v, to deduce (b) we may

assume u = v + Uw - w. Write u = u' + x, v = v' + y with x, y E Z(w) and

u', v' t Z (w) . Then x = y + Uw - w, u' = v' and u = u' + x, v = v' +Y-. The

relation x = y + Uw - w implies f(A) = g(A) + A - 1 where f = (.)2 A) ,

(kyg = a /i(A) , a I = (s I = 1. Now for p >> P(1) = 0 we have
i

J(P) - u' +x
)

- (d v' +
)

npz dp
1 dp ` dp IA-llz

f (dp) ( z z l z dp (since
l (a+b) n-(c+b) 2 l_ l a2-c2 l)KI1dp/ dP

l=fK[

(d
dx-

2
w

IA-il2
d

= 1K(Ifl - lgl)z
IAl1l2 dw

f-g z
-JK llilz dw(K) <

Now suppose (b) holds. Choose w E H such that w > (E. g. write

µa + As with A. < v, µs 1 v and let z E Z (u) have z=/-tNow z 1 v
so z + v = z + v. Take w = z + v.) Let , v0 be the preimages, under the

()2,ducanonical map of Z(w) to Lz (w) , of ()a respectively. Then

uo = u, vo = v and there exist unitary R, S : H - H such that RU = UR, SU = US
/

a n d Ru = u0 , Sv = vo. By hypothesis, h(A) = [ I d=)2 - (dw) 2 J (A-1) E
L 2 ( ) .

Writing this as

du (d7V2 + Ah(A) - h(A)
aw =

and taking preimages with respect to the canonical map of Z(w) onto Lz (w) we

obtain u0 = v0 + Uw0 - w0 for some w0 E Z(w) . Hence Ru = Sv + Uw0 - w0 and

(a) follows with W = R-i S. //

A partial converse to 10 is

14. Proposition. Assume U has no fixed vectors other than 0, let u, v E H

and denote by µ the Lebesgue measure on K. Suppose u, v « µ, (-) 2 and
( dv l a are differentiable at 1 and oz (u) = a2 (v). Then there exists a unitary

dIA
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W:H-H suchthat WU=UW and u=Wv+Uw-w for some wE H.

Proof. (72 (u) = lim n II u + Uu + ... +u n-lu II
2

n-+ oo

fll+x+... +Xn-llz

duK

= lim 1 1-An 2 du

Tr 0 n fK I 1- dµ dµ

d7u_ (1) , by a well known property of Fejer's kernel.

By hypothesis, then, dµ (1) _ & (1). Hence
2

_
JK da _ 1 1) 2 dv

du du <J(µ) - °o

1-a 1-a
and the proposition follows from 12. //

15. Corollary. SuMse U has no fixed vectors other than 0 and let
u E H. If u << µ and if ( ,)2 is differentiable at 1 then, Q2 (u) = 0 iff u is a
coboundary.

1\\

Proof. If 0,2 (u) =0, taking v = 0 in 14, u = Uw - w for some w E H. The

converse is obvious. //

3. INFORMATION VARIANCE

16. Definition. Let (X, (, a, m, T) be a process with information cocycle

IT = I(a I T-1 (t) . 1°T = IT - f IT dm is called the centralised information cocycle of

the process (when IT E L1(X)) . If IT E L2 (X) and Q2 (I9.,) exists, then
Q2 (T) = Q2 (I°T) is called the information variance of the process.

By 7, when T1 T2 is a regular isomorphism of the processes

(X.. (B., ai, mi, Ti) with IT E L2 (Xi) (i = 1, 2) we have
1

I = IT ° 0 + g ° Tl - g for some g E L2 (XI).
T1 2

From this we obtain fIT1 dm1 = f IT2 dm2 and

I°T1 =1-0T2 o O+g° T1 -g.

Now 10 shows that Q2 (T1) exists iff 0,2 (T2) exists and that in this case

92 (T1) = 02 (T2). Thus information variance is, under suitable conditions, an
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invariant of regular isomorphism. We now turn to its computation.

17. Exercise [F. P. ] . Let S and T be processes. Assuming these
quantities exist, prove that v 2 (Tn) = n72 (T) , n = 1, 2, ... and that

72(S x T) = C" (S) +72(T).

18. Exercise. Let T be the Bernoulli process given by the probability

vector p = (p(1) , ... , p(k)) and let a be its state partition. Show that

IT = I( () and, using the independence of { I( a) ° Tn that
k k

Q2 (T) = f (I( 4) - h)' (log p(i) + h) 2 p(i) where h = - p(i) log p(i).
1=1 i=1

Let (X, (B, m, T) be the Markov chain given by the matrix P with left
invariant probability vector p, pP= p. It is easy to see that IT = I(4I T-t ,

where a is the state partition.

i. e.
p(x1)

IT(x)
\I

-log
p(xo)P(xo, xt))

for x = (x) EX.
n

Hence IT and I0 are both functions of only two coordinates and 0,2 (T) may be

evaluated via

19. Proposition [P. S. J. Let (X, 12, m, T) be the Markov chain given by the

aperiodic k x k matrix P and the probability vector p with pP = p. Consider

L2 (X) with the unitary operator U induced by T, Uf = f ° T for f E L2 (X).

If u E L2 (X) is a function of two variables with f u dm = 0 then it has spectral

measure u K µ (Lebesgue measure) such that f = !Lu is C oO and

k
72(u) =f(1) = f Iul2dm+2(Re Z p(i) P(i, j)c(j)u(i, j)

i, j=1

where c E Vo = {v E ck : Pnv_ 0 as n- °o } satisfies (I - P) c = b,
k

b(i) _ I P(i, j) u(i, j).
j=1

Proof. First note that for y = (y(1) , ... , y(k) ) tr E Ck
k p

Pny - (L p(i) y(i) )1 where 1 = (1, .. , 1) tr, since Pn-+ : , the matrix
i=1 p

with identical rows p.

For n > 1 we have

Unu, u) = f u(Tn) u dm
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u(i, j) u(k, 1) p(i) P(i, j)Pn-l(j, k) P(k, 1)
i,j,k,I

_
(Pn-lb,

a)

where a(j) = , u(i, j) p(i) P(i, j) , b(k) _ u(k, Z) P(k, 1) and ( , ) denotes
k i

the usual C inner product. Note I p(k) b(k) p(k) u(k, 1) P(k, 1) = f u dm=0
k k, l

so that b E Vo. Since Pnb 0 exponentially fast, (Un u, u) 0 exponentially

fast and the function f(A) = L, (Un u , u) -Ti. s defined and C oO on the circle

K. It is easy to see that
nEZ

(Un u , u) = fK Anf(A) dµ(A) for n E Z.

Hence < µ and L = f. That aZ (u) = f( 1) was shown in the proof of 14. To

evaluate f(A) for A E K note that, by the exponential convergence of Pnb to 0,
00

Z (A
1 P ) n-lb converges, to c(X) say. Then c(t) E Vo, (I - A 1 P) c(x) = b

n=1
and these two conditions determine c(A) , since (I - x 1 P) z = 0 and z E Vo

together imply z = 0. Now for A E K

00f(A) = f k I' dm + 26ie I x n( Pn-1b, a)
n=1

= f JuIZdm+261e(x 1

n1((A
1P)n-1b, a))

= f I u1Zdm +261eA1(c(A), a)

and the proof is completed by taking A = 1, c = c(l). //

20. Exercise. Calculate the information variance of the Markov chain defined

by the matrix (q p) , 0 < p, q < 1, p + q = 1.

21. Exercise. Use 19 to compute the information variance of the Bernoulli

process given by a probability vector p. Compare with 18.

22. Exercise. Use 19 and 15 to show, with the hypotheses and notation of 19,

that 0'2 (u) = 0 iff u is a coboundary. In particular, Q2 (T) = 0 iff IT is co-
homologous to the constant h(T) = f IT dm.

It is now possible to show that many Bernoulli processes, although isomorphic
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(i. e. with identical entropies) , are not regularly isomorphic. For instance the

process given by (1 1 1 ) and (1 1 1 1 1) which were proved by
4 4 4 4) 2' 8 8 8 8

Meschalkin [M'] to be isomorphic, are not regularly isomorphic as computation of

their information variances will reveal. In the next section we show, quite

generally, that two Bernoulli processes given by the vectors p, q are not regularly

isomorphic unless q may be obtained from p by a permutation.

4. THE VARIATIONAL PRINCIPLE FOR TOPOLOGICAL MARKOV CHAINS

We shall prove the variational principle for functions depending on finitely

many coordinates of a topological Markov chain. We define pressure for such

functions, and use pressure to obtain invariants of regular isomorphism.

The following variational characterisation of Markov measures is essentially

due to Wolfowitz [W"].

23. Lemma. Let T be the shift on X = H (1, ..., k } and let a be00
-co

the state partition of X. If m is a T-invariant Borel probability such that with

respect to it T has entropy h(m) = H(al T-1 a), then m is a Markov measure.

Proof. From H( a I ' T la) = h(m) = H(a IT-'d) we deduce that
n 1=1

H(al v T-1a) = H(aIT-1 a) for all n = 1, 2, ... . By the last exercise of
1=1

section 6 of Chapter I,

m(A f1T-1A) m(A nT-1 A f1T-2 A ) m(A
nT-1 A. f1T-2 A. f1T-3A )

to it i
=

o it
i2 =

io 11
12 i3 = ...

m(Ai1) m(A f1
T-1A) m(A. fl T-1 A. flT-2A

t i2 11 12 isi

for all sequences At.o, Ail, ... of sets in a. Now taking

0 if m(A, fl T-1A.) = 0
'0 11

P(iO, i1) = m(Ai fl T-1A1)
0 hot erwise

and p(io) = m(Ai) we see that pP = p and that m is the Markov measure
0

given by P. //

24. Theorem. Let (X, (, m, T) be a (reduced) Markov chain. Then
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8µdµ < f Im dµ

for all T-invariant Borel probabilities µ on the topological Markov chain (X, T).

Equality holds only when µ = m.

Proof. Denote by a the state partition of X and for a T-invariant Borel
00

probability µ put
It

=1 µ(a I
i"1

T), Jµ = µ(o I T_1
a). By 23,

dp ? fl dµ with equality only when µ is a Markov measure. We havef Jµ µ

mf (I - Jµ) dµ = f [-log( m[[x,
]µ[xo

u[
y'I) ] a µ

> (1 m[xo, x1]µ[x1])
µ[xo xi]

µ[xo,xl]>0 m 1 ,x1

since - logy > 1 - y for y > 0 with equality only when y = 1. Hence

fi dIA - f Iµ aµ >- f Im dµ - f Jµ dµ =f 1 - I m[xo, X ]µ[xl ] 0.
1

For the last part examine the conditions under which the inequalities used are

equalities. //

25. Theorem (Variational Principle) [L. R. ], [S-1. Let (X, T) be a
topological Markov chain and let f be a function of two coordinates, f (x) = f(x0, xj)

for x = (xn) E X. Then there is a unique T-invariant probability m such that

f (Iµ+f)aµ`- f (Im+f) dm

for all T-invariant Borel probabilities p. m is Markov and is supported by X.

Proof. Suppose (X, T) is given by the k X k irreducible 0-1 matrix A.

Consider t h e k X k matrix M defined M(i, j) = A(i, j) a (1, P. By the Perron-

Frobenius theorem there is a maximum eigenvalue U > 0 and a strictly positive

vector r = (r(1) , ..., r(k) )tr such that Mr = /3r. The matrix P with
P(i, j) = M(i, j) r(j) /Pr(i) is stochastic. Take m to be the Markov probability

defined by P. Then for (i, j) with A(i, j) = 1 we have

-log P(i, j) = -f(i, j) + log IS + log r(i) - log r(j)

and, since Im is cohomologous to the function equal to -log P(i, j) on [i, j],
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Im+f= logj+g° T-g

for some g : X -1R. Now from 24 we see that

f (Im+f)dm=logl3 = f (Im+f)dz? f (Iµ+f)dµ

with equality only when p = m. /

26. Corollary [P. 2]. Let (X, T) be a topological Markov chain. There is

a unique T-invariant probability m such that hm(T) ? hµ( T) for all T-

invariant Borel probabilities p. m is Markov and is supported by X.

27. Remark. 26 is obtained by taking f = 0 in 25. The Markov probability

m of 26 is defined by the stochastic matrix

PG I j) = A(i, j) r(j)
r(i)

where A is the defining matrix of (X, 7), 0 the maximum eigenvalue of A and
r a strictly positive right eigenvector. Such Markov measures and their associa-

ted Markov chains are, for reasons obvious from 26, said to be of maximal type.

28. Corollary. Let (X, T) be a topological Markov chain and let f be

a function of finitely many coordinates. Then there exists a unique T-invariant

probability m such that

f (Iµ+f) dp:s f(Im+f)dm

for all T-invariant Borel probabilities p . m is multiple Markov.

Proof. If f depends on n coordinates, we consider the topologically con-

jugate topological Markov chain having as states allowable words of length n - 1,

with j1j2 .. j following i1i2 ... i iff j1 =i2, ..., j
n-1 n-1 n-2 - In-1'

29. Definition. If f is a function of finitely many coordinates of the

topological Markov chain (X, T) ,

P(f) = sup {hA(T) + f f dµ : p is a T-invariant Borel probability )

is called the pressure of f. P(0) is called the topological entropy of T.
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25 may now be interpreted as stating that there is a unique T-invariant proba-
bility m (which is Markov and) which satisfies hm(T) + f f dm = P(f).

30. Lemma. Let (X, (, m, T) be a Markov chain and write

S
n
(I

m
) = I

m
+ I

m
o T +... + I

m
o

Tn-l. Then for any t E IR,

lim 1 log f exp(t S (I )) dm = P((t - 1) I ) .ny,on n m m

Proof. Suppose the Markov chain is defined by the stochastic matrix M.

Then

n

and f exp(t Sn( Im)) dm

m[io ] M(io , ii) ... M(in-1' ln) -t
= f X ( dm

[io , .... i m[in]

= 1 1
(m[io 1) 1-t(m[in1) t(M(io , i1) ... M(in-l, in)) l-t

p,.. > n

But there exist constants k, K such that 0 < k < (m[io J) 1-t(m[inI) t < K for all

io , i so that
n

k I (M(io , i1) ... Mill-l. in)) 1-t f exp(t Sn(Im)) dm
io....,in

and

<K (M(io,it)...M(in-l.in))1-t

n

lim
n

log f exp(t Sn(Im dm = lim
n

log (M(io , i1) ... M(i n-1, i
n))

1-t

n-- n-r no io ..... In

provided the last limit exists.

Denote by Ml-t the matrix whose (i, j) entry is M(i, j) 1-t if M(i, j) > 0
and zero otherwise. Use the Perron-Frobenius theorem to find 0 > 0 and a strictly

positive vector r such that M1-t
r = (Sr. By an argument similar to the above

lim 1 log Z (M(io , i1) ... M(i , i)) 1-t
1

n

n
n

log , M(io, i1) 1-t ... M(in-1' ill) 1-tr(in

io,...,in

'm[ioIM(io,it)M(ii,i2)...M(in-l,in)
S (I X[i clogn m p,...,in min

n n- n
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1, \1 ..,. ..1-t - .1-t,V 1-t ,- ..= lim
n- o0 10,...,1n-1

1n

=llim
n

log M(io , i1)
1-t ... M(i n 2, i n-1 ) 1-tr(i

n -.o6

/3

n-1

lim 1 log (en
Z r(io )) (by repeating the last step n times)

n io

=log/3.

Finally, the proof of 25 shows that P( (t - 1) Im) = log (h. //

31. Theorem [T]. Let (X1, (B1, m1, T1) and (X2, (332, m2, T2) be

Markov chains. Suppose they are regularly isomorphic. Then P(tI ) = P(ti
T1 T2

for all t E IR. If T1, T2 are Bernoulli and are defined by the probability

vectors p=(p(1), ..., p(k)), q=(q(1), ..., q(t)) then I =k and q may
be obtained from p by a permutation.

Proof. Let T1 0' T2 be the regular isomorphism. Note that the informa-

tion cocycles of Markov chains are bounded to conclude from 7 that

I
T1

=I
T2 0

0+9° T1 -g

where g E L°°(X1). By 30, for each t E IR,

P t- l I = lim 1 log f exp t (S (I )
n

T1 n-.oo n n T

lim 1 log f exp t S (I ) ° 0 dm1 (since g E L (X1) )n n T2

lim 1109 f exp t S (I ) dm2 = P(t - 1) I ) .
n n T2 T2

This proves the first part of the theorem. If T1, T2 are Bernoulli processes

defined by p = (p(1) , ..., p(k)), q = (q(1) , ..., q(1)) then by 25 and its proof

we have

k
log

,
p(i) -t = P(tiT1) = P(tiT2 ) = log I q(l)

1

-t
J=1

for all t E IR. It follows that I = k and that q is a permutation of p. //
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We end the section with an exercise and some remarks on variational principles

32. Exercise (Ratio Variational Principle)-. Let f be a strictly positive
function depending on only two coordinates of a topological Markov chain (X, T).

Show that there exists a unique T-invariant probability m (which is Markov) such

that

fImdm > fIµdu
ff dm ff d}t

for all T-invariant Borel probabilities µ.

33. Remarks. (i) Theorem 25 has not been stated in its most general form.

Excellent accounts of the variational principle in a setting more general than 25 may

be found in [B. 1] and [W. 31. Bowen's monograph [B. 11 also relates topological

Markov chains to Axiom A diffeomorphisms.

(ii) The general definition of pressure for f E C(X) where X is a compact

metric space with continuous T : X -. X and the variational principle related to

this are due to Ruelle [R"] and Walters [W. 21.

(iii) The maximal measure of 26 was constructed in [P. 21. Later it was

learned that Shannon had included a similar result in his earlier paper [S. W. I. We

discuss these results in the Appendix. The maximal measure has been particularly

fruitful in the hands of Adler and Weiss [A. W. 1, Sinai [S"] and Bowen [B. 11.

(iv) 32, the ratio variational principle appears in [B. R. ] and [P. 41. (See

also [TI.)

(v) For a more general discussion of 30, see [R"] and [T].

5. A GROUP INVARIANT [P. 3]

34. Definition. Let (X1, (Bt, m1) be a Lebesgue space and let Tt be an

endomorphism on it. If Jt : X1 -, IR we let AT (J1) be the set
t

1(a, b) E IR2 : F0T1 = F exp 27ri(a +bJ1) for some F : X1 -+ C with IFI = 1 }.

If Tt is a process with finite information cocycle I , we put A(T1) =A (I ) .
T1 Tt T1

It is easy to see that AT (Jt) is a subgroup of IR2 . If J1 = J', + g 0 T1 - g
1

where J1, g:Xf -*IR then A (Ji) =A (J1). If (X2, 612, m2) is aspace
T1 0

Tt
with endomorphism T2 and if Ti- T2 is a homomorphism then for any
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J2 : X2 - IR A
T2

(J2) C A
T1

(J2 o 0) . Hence A
T2

(J2) = A
T1

(J2 o 0) if 0 is an
isomorphism. The following proposition should be clear from these remarks and 7.

35. Proposition. If T1 , T2 are regularly isomorphic processes with finite

information cocycles then A (T1) = A(T2) .

36. Exercise. Let S, T be processes. If (a, b) E A (T) show that

(na, b) C A(Tn) . If (na, b) E A (Tn) show that (na, nb) E A(T). Also show

that if (a, c) E A(S) and (b, c) E A(T) then (a + b, c) E A(S X T) . Can more

be said?

We now prove some results toward the computation of A(T).

37. Proposition. If (X, a3, (1, m, T) is a process and if F o T = fF

where If l = 1 and f is a-measurable then F is a-measurable.

Proof. First assume F E L2 (X, Q3 , m) . By definition a C T a C T' d C .. .

and n 0Tna generates (B so L2 (X, (1, m) C L2 (X, T( I, m) C L2(X, T2(1 ,m) C..

and n0
L2 (X, Tn a, m) is dense in L2 (X, 63 , m) . Denote by U the unitary

operator defined by T, Uf = f o T for f E L2 (X, (B, M). Put

V = L2 (X, Ta, m) G L2 (X, a , m) and note that for n E Z

Un(L2 (X, d, m)) = L2 (X, T -n(,, m) and

Un(V) =L2(X, T-n+la m) OL2(X, T-na M)

We have L2 (X, 63, m) = L2 (X, a, m) ®® U T1V since the subspace on the
n=0 oo

right is closed and contains each L2 (X, Tn (t, m) , n > 0. Write F = FO + I U-nf
nn=0

where FO E L2 (X, a, m) , f
n

E V. By assumption,
oo

F=f(FoT) =f(Fpo T+foo T) + I f U-nfn+1'
n=0

Note that multiplication by f E L (X, CI, m) maps L2 (X, (i, m) to itself and

each U 1 \7 to itself and use uniqueness of the expression for f to deduce

FO = f (Fo o T + fo o T)

fQ
= ffi f1 o T-1

=
f(f2 o T-1) f2 o T-1

=
f(f3 o T-1) ...
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Thus fo., fl, ... all have the same L2 norm and, for the convergence of the

series for F, must all be zero. Hence F = FO E L2 (X, a, M).

For measurable F : X - C truncate by putting Fn = F X B where
n

Bn= {x: IFI :Sn}. Then Fn E L0(X, (B, m) C L2(X,
(B,

m). Since IfI= 1,
F C

n
T = fF

n
. Thus each Fn is (%-measurable. But F

n
" F (pointwise) and so

F is a-measurable. //

38. Proposition. Let T be an automorphism of (X, (B, m) with generator

Q. If F°T=fF where Ifl =1 and f is a"T-1a".. "T-na
-1then F is measurable with respect to ("T a) n (

00 Ta).
i=0 i=-(n-i)

measurable,

Proof. f is i 0 T-ia measurable so F is i
T-la measurable by 37.

F 0
T-1 = (f ° T-1) F and f C T-1 is measurable with respect to

00

" Tla C " Tla, which is T-1 exhaustive. 37 shows that F is also

co

Tla measurable.
i=-(n-i)

39. Corollary. (i) If (X, (2, (1, m, T) is a process and if F G T = F + f

where F, f are finite and 03, a measurable respectively, then F is a
measurable.

(ii) If T is an automorphism of (X, (B, m) with generator a and if
F C T = F + f where F, f are finite and f is a" T-1 a .. " T-n a

00
measurable, then F is measurable with respect to (`V T-1a) n ( '% Tla) .

i=0 1=-(n-1)

Proof. (i) The equation

exp 2 7rit F C T = exp 2 lritf. . exp 211 itF

and 37 show that exp 271 itF is d -measurable for every t E 1R. By approximation,

g 0 F is a-measurable for any continuous g : IR -+ C with compact support.

Again by approximation, F-1(S) E a for each bounded interval S and the result
follows.

(ii) is obtained from 38 in a similar way. //

40. Exercise. Prove the above corollary directly, under the additional

assumption that F, f are square integrable.
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41. Proposition. If (X, (B, m, T) is a Markov chain with state partition

a, then (" T 1a) fl (
i=\11

T1N) = o
"T-1 a ... T-(n-1) c, for n=1, 2, ... .

i=0 =-(n-1)

Proof. Since a " T-1 a T-(n-1) a may be considered as the state

partition of an isomorphic Markov chain it suffices to prove the proposition for the
00 i W

case n=1 i.e. (" T a) fl(" Ta) =a.
i=0 1=0

Let f E L1 be measurable with respect to the intersection a-algebra. Put

i=O
Tia) . By the increasing Martingale theorem,fn = E(f I i=n

°O i 1fn + E (f I i=0 T a) = f a. e. and in L .

Since

f IE(ffo T-1a) - E(fnI O T_ a) Idm f If - fnldm,

E(fnl o 00 T-1a) - E(fN0 T-1a) = f in Ll.

Put fn = a(C) X C where the sum is over all cylinders C of the form
C

1-n' 1-n+l' . ' ,
01-n, Then

k
/m(D)E(fnI o T-10) = F XD(f D

f
n

dm)
D

where the sum is over all cylinders D of the form

k
I.e. E(f I" T-1a) =

D XDm(D) C

Go, .... ;k I.

a(C) m(C fl D)

=1 XD(Z a(C) m(C n D) /m(D) )
D C

which is easily seen to be a measurable. Again by the increasing Martingale
k .0

theorem E(fn I T-1CL- E(fn I- T-1C!) in L1 as k - 00. Thus each

E(f
I"T-1G1.)

is a measurable, and so is their L1 limit f. The proof isn 0
completed by considering f = XB for B in the intersection a-algebra. //

42. Corollary. Let T be a Markov chain with state partition a. If

F°T=fF(IfI=1) or F°T=f+F where f is a"T-la"... "T-na
measurable, then F is Co " . . . " T-(n-1) Cl measurable.
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In the same way one proves

43. Proposition. If T is Bernoulli with state partition 0 and if
F ° T = fF where If I = 1 and f is a measurable, then F is constant a. e.
(i.e. f= 1).

We may now prove with little effort the following interesting

44. Proposition. For a Markov chain T the following are equivalent

(i) 92(T) =0
(ii) IT is cohomologous to a constant

(iii) T is of maximal type.

Proof. We easily see from 22 that (i) and (ii) are equivalent. We show (ii)

and (iii) are equivalent. If T is defined by P(i, j) = A(i, j) r(j) where A is aPr(i)
0-1 matrix, A its maximum eigenvalue and r a corresponding eigenvector, then

I,1, is cohomologous to the function equal on [i, ji to

-log P(i, j) = log Is - log r(j) + log r(i)

i. e. IT is cohomologous to the constant log S. Conversely, if IT is cohomologous

to the constant log (D, A > 0, then

-log P(i, j) = log ( + f ° T - f

for some f. We see from 42 that f is then a measurable so that

-f(j)
P( i, J) = A(i, j) a-f(')

where A is the 0-1 matrix compatible with P. Since P is stochastic, U > 0 is
an eigenvalue of A with corresponding eigenvector (e-f(1).. a-f(k))

Hence,

by Perron-Frobenius, r is the maximal eigenvalue of A and T is of maximal type. /

Consider the Markov chains T1 , T2 and T3 respectively defined by (p q)
Pq

(q P) and (q pq) where 0 < p < 1, p # a and p + q = 1. These have the same

entropy and, as we have seen in 18 and 20, the same information variance. It is

also not hard to see that P(tI
T1

) = P(tI
T2

) = P(tI
T3

) for all t E 1R. We now

show that TI, T2, T3 are not regularly isomorphic by computing their A groups.

T1 is the Bernoulli process given by (p, q) so that if (a, b) E A (T1) then
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for some F with I F ! = 1 we have P o T= F exp 2r i(a + bIT) and, by 43,

exp27ri(a+bIT) =Fo T/F=1.
r

We conclude that a + bIT must take values in Z and that
r

A(T,) = {(a, b) E JR2 :a - blogp, a- bloggE Z).

If (a, b) E A(T2) we have

F u T/F =
exp 29i(a - b log p) on [li) U [221

exp 27r i(a - b log q) on [12] U [211

for some F with I F I = 1. 42 shows that F depends only on the zero coordinate so,

exp 27ri(a - b log p) = F = 1 and exp 27r i(a - b log q) = FF 2) = F ) Hence

A(T2) = {(a, b) E JR2 : a - b log p, 2(a - b log q) E Z) .

Interchanging p and q, A (T3) = 1(a, b) E IR2 :2(a - b log p), a - b log q E Z) .

Thus A(T1) , A(T2) , A(T3) are pairwise distinct, and the processes T1, T2,

T3 are not regularly isomorphic.

6. QUASI-REGULAR ISOMORPHISMS AND BOUNDED CODES

In this section we relax the rather stringent requirement of regularity but

insist that isomorphisms be sufficiently well-behaved (quasi-regular) to ensure

that the cocycle-coboundary equation is retained at least in a weak form. Quasi-

regularity is defined in terms of a metric on sub-U-algebras, which we now des-

cribe. We fix for this section a Lebesgue space (X, a, m).

45. Definition. (i) Let a = (Ar , A2, ...) be a (finite or) countable

ordered partition of (X, B, m). If (s = (Br , B2, ...) is an ordered partition of

the same cardinality, d( a, (3) = 2, m(A A B) = 2 - 21 m(A n B) . If C G
n n n n n n

is a sub-a-algebra d(a, e) = inf d(a, y) where the infimum is over all par-
yce

titions of the same cardinality as a.

(ii) If a, e C U3 are sub-Q-algebras, d((i, a) = sup d(a, e) where

the supremum is over all countable partitions.
acct
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The relations listed in the following proposition are easy to verify or proofs

can be found in [P6J or [P7J .

46. Proposition. If a, C etc. are sub-Q-algebras of a3, then

(i) 0 5d(a, e) `-2,
(ii) d(a, C) = 0 iff a C C,
(iii) d(al, a2) `d(C1, a3) +d(a3, a2) so d(al, C12) `- d(a3, az) if

a1 C a3 and d((11, a2) ::!:-d(a1, a3) if (13 C a2,
(iv) d(a1 "a2, e1 "C2) d(a1, C1) +d(a2, C2) so

d(a1 " a2, e) =d(a1, e) when a2 C a,
(v) d((i, e) = d(T-1 a, T-1 C`) for a homomorphism (endomorphism) T into X,

(vi) d(an, C) t d(a, e) when an t a,
(vii) d(a , e n) j d(a, e) when Gn 1 G and a is a countable partition.

Despite 46 (vi) and (vii), it is not true in general that d(a , a n) " d(a , C)

when a n t C. It is useful to note that d(( t, e) = sup { d( a, 0) : a C a is a
finite partition) since (X, a, m) is Lebesgue. 46(i) -(iii) show that d is

nearly a metric - it is not symmetric. To get a metric we define

D(a, C) = max {d(a, C) , d(C, (t) ) for sub-Q-algebras a, C C 63.

47. Theorem [P7]. Let a, e be sub-Q-algebras. Then d(a, e) < 2
iff I((t IC) is finite on a set of positive measure.

Proof. Since d((t "C , e) = d(( t, e) and I(a " C I C) = I(a I C), we
may assume a C a. Suppose d((I, C) < 2. Pick E > 0 small enough to have

d(a, C) < 2 - 2s. Let a= (Al , A2 , ...) C a be a countable partition. By the
definition of d, there is a partition y = (C1, C2 , ...) C C such that

d(a, Y) = Z m(An A Cn) < 2 - 2C i.e. I m(An fl Cn) > e .
n n

By Holder's inequality,

X=Z XC m(AnIC) <(1 XC ) 2(I m(AnIC)2) 2=(I m(AnIC)2)
n n n n n n n

so that

1 1

(J Z m(AnIC)2dm) 2> f (Im(An10)2) 2dm
n n
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I C ) .
n n

Hence, for any partition a = (AI , A2, ...) C C1,

fE(ale)dm> 62 where E(ale) =I XA m(Anle)
n n

Now choose partitions ak t a and put E((i I e) = lim E(a k I e) so that
k~ -0

I(a 10-) = -log E((t 10-). From above, f E((I 16) dm > 62. We conclude that

E(a IC) is positive and I(a I e) < 00, on a set of positive measure.

Conversely, suppose I(a I (B) < °o on a set of positive measure. Then
E( a e) is positive on this set and we can find 6 > 0 such that if

E = ix : E(a l e) > 6) then m(E) > E. Let a C a be a finite partition finer
than (E, Ec) so that E = Al U ... U Ak, a disjoint union of sets in a. Then

E(aIe) ? E((t le) so, for each k, m(Aile) >6 on A. and, using the
fact that m(A1 . l e) is a measurable, m(A1. l e) >E on some C1. E e, A1 . C C1..

Put CI' = CI , C2' = C2 - C1, C3' = C3 - (C1 U C2), ... , Ck = Ck - (CI U... U Ck-1) .

C! are disjoint and C. J C! so
1 1 1

k k
m(Cl n A ) _ f C, m(Ai l e) dm

i=1 i=1 i
k k

E m( C') = E m( U C.) = 6 m(E) > E2.
i=1

1
i=1 1

Hence d(a, e) <2-2F2 provided a refines (E, Ec) and it follows that

d(a, e) <2-262. //

48. Definition. Two sub-a-algebras a and a are said to be quasi-regularly
related if D( (t, e) < 2 or, equivalently, if I(a I e) and I(e I CO are each finite

T.) (i = 1, 2) areon sets of positive measure. Two processes (X., m1.,
11 1 1'

said to be quasi-regularly isomorphic if there is an isomorphism T1 w T2 such

that aI and 1a2 are quasi-regularly related.

This definition is justified by the following theorem and its corollaries.

49. Theorem [ P. 7]. Let T be an ergodic endomorphism of (X, (B, m)

and let a, e be quasi-regularly related sub-a-algebras such that T-1a C a,
T-1e C e. If 1(a IT-'a) is finite (a. e.) then I(0IT-1e), I(aIe) and
I(e (t) are finite (a. e.) , and I( a I T-1 a) and I(e T_'0) are cohomologous.
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Proof. We have I(Ct, "eIT-'a) =I((t IT-1a) +I(eIa),

I(a "0 IT-1(i) =I(a"CHIT-1a"T-1C`) +I((I(1)oT.

Put E= {x : I(e I(t) < CO) and F= Ix : I(a, " e IT-ia -T-IC) < -J. By 47,

m(E) > 0. Since I(a I T-1 (t) is finite by assumption, the above equalities show

that m(F) ? m(E) > 0. Also F n T-1 E = E so that T-1 E D E and, as T is
(measure-preserving and) ergodic, m(E) = 1. It follows that m(F) = 1. Thus

I((I a) and I(a " e I T-1 (t " T-1 C) are finite (a. e.). The equations

I(e IT-1e) + I(a I

I(a"eIT-1a"T-1,C) +I(aIe)°T

show by a similar argument that I( a I () and I(e T-1e) are finite (a. e.) . That

I( a I T-1 a) and I( O I T-1 C) are cohomologous can be seen from the four equations

above. //

50. Corollary. If T is an ergodic endomorphism of (X, 03, m) , then the

quasi-regularity relation is an equivalence relation between sub-a-algebras a with

T-1 a C a and I(a I T-1 a) < °° a. e.

Proof. Reflexivity and symmetry are clear. To show that the relation is

transitive suppose D(a1, (t2) < 2 and D(a2i a3) < 2 where ai C UI satisfy
T-1a i C a1, I(a

1
.IT-1a

1
.) < O° a.e. for i = 1, 2, 3. Note that

I(a1Ia3) 25 I(a1 " a2I(13) =I(a1Ia2 " (13) +1(a2Ia3)

and I(a2 Ias) < oO a.e. by 49. Since d(a1, a2 " as) < d(a1, a2) < 2,
I01 Ia'2 " a3) and I(a1 Ia3) are finite on a set of positive measure. Hence

d((t1, a 3) < 2. Similarly d(a 3 , (L1) < 2. //

51. Corollary. If two ergodic processes (X1., 03., a1, m1., T
1
,) (i = 1, 2)

are quasi-regularly isomorphic by
T1

I a. e. and,

in this case, I
T1

, I
T2

° 0 are cohomologous.

52. Corollary. If two ergodic processes with finite information cocycles are

quasi-regularly isomorphic then one of the cocycles is cohomologous to a constant

iff the other is. Consequently, if the processes are Markov, then one of them is of
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maximal type iff the other is.

Quasi-regularity is related to, and was suggested by, Bowen's notion of

bounded coding [ B. 21:

53. Definition. When T is an automorphism of (X, (B, m) and 0, f are
finite partitions, 0 boundedly codes a (with respect to T) if for every E > 0
there exists k E IN such that for all n EIN

n n+k

d( " T-1 0, " T-1N) < E.
i=0 i=-k

When T. (i = 1, 2) are two finite state processes with state partitions ail then T2

boundedly codes T1 if there is an isomorphism Tl 0
T2 such that 0-1 a2 boundedly

codes al with respect to T1.

54. Proposition. If the finite state process T2 boundedly codes the finite

state process Tl through the isomorphism T1 - T2 then d( Ct l , 1 Ct2) < 2,
w

where Ct . _ " T-I a. , a state partitions.
1 j=0 1 1 i

Proof. It is easy to see that for 0 < E < 2, there exists k E IN such that
n

d(\, T1 ial Tlk$-1 a2) < E
1=0

for n = 1 , 2, ... . Therefore, by 46 (vi) , d( Ct 1, TIkO_I Ct2) < 6< 2. Hence
I( (t 1 IT,k01 a2) is finite on a set of positive measure. It follows that I(Ca 1 10-'a2)

is also finite on a set of positive measure, since

I(a1 I$ lag) -`1(a1 " Tlk$ Ia2I$ lag)

=I((Il ITIk$ lag) +I(9 1(12 ITi-k0_1 d2) ° T1k

and the last term has integral

H( as " ... " T2 (k-1) a2 I T2 ka 2) k H(ave) < °O . //

55. Corollary. If the finite state processes Tl , T2 simultaneously boundedly

code each other (i. e. if there exists an isomorphism Tl w T2 such that al and
¢ 1 a-2 boundedly code each other) , then T1, T2 are quasi-regularly isomorphic.

In view of the above results the group invariant of the preceding section can be
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used to distinguish ergodic processes from the point of view of quasi-regular isomor-

phism (and finite state processes from the point of view of bounded coding). Unlike

theorem 7, 51 does not indicate when the information cocycles are Lq-cohomologous

(1 q < 10). The pressure invariants of Section 4 cannot be used unless we have

some means of guaranteeing that the information cocycles are cohomologous by an

Loo -coboundary (in the sense of definition 5). Information variance, however, can be

used even when the functions occurring in 51 are not known to be in L2. This, as
we shall see in the next section, is because information variance presents itself in

various central limit theorems.

7. CENTRAL LIMITING DISTRIBUTIONS AS INVARIANTS

In this section we show how a central limiting distribution (if it exists) can

be used as an invariant of the relations

T1 0 T2, 1-0
TI =1°

T2
° 0+9° TI -g (*)

for processes T1, T2 . We assume that these relations hold and that the functions

which appear in (*) are finite a. e.

56. Proposition. Suppose the relations (*) hold and for a sequence

B (n) - oo consider

FT (t)=lim MIX: -(1°Z °Tn-1) (x)<t}.

i n- °O i 1

Then F
TI

(t) exists iff F
T2

(t) exists and, in this case, F
TI

(t) = F
T2

(t) .

Proof. This is immediate from the easily verified fact that

(g ° T1n - g) /B (n) -', 0 in measure. //

57. Corollary. If T1, T2 are quasi-regularly isomorphic Markov chains

then Q2(TI) =Q2(T2)

Proof. Since I0Tj , V.
T2

functions of the zero and first coordinates,
2 I

F
TI

(t) , F
T2

(t) exist for 0 (n) = nn as long as a 2 (TI) , Q2 (T2) are not zero.

In this case,

FT(t) =(2rra2(Ti))- exp(-u2 /2U2 (T du
I
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Hence T2 (Tt) = o 2 (T2) when they are not zero. If, say, 92 (T1) = 0, then by 44

ITI is cohomologous to a constant and therefore IT2 is cohomologous to a constant

and QZ (T2) = 0. The proof is now complete. //

Bowen proved in [B. 21 that sufficiently small smooth partitions for C2

Anosov diffeomorphisms T preserving a probability equivalent to Lebesgue measure

boundedly code each other. Therefore, if 0 is such a partition, i"I Tla is00
=0

canonical in the sense that any other such partition b gives rise to a or -algebra

" T iA which is intimately (quasi-regularly) related to it. This statement can be
i=0

00 .

put into geometrical language; we simply stress that in this situation I( cc T-'a)
i=1

1and I((I T A) are cohomologous. For the terms left undefined in this para-

graph, we refer the reader to [B. 11 and [B. 2].

58. Remarks and Problems. (i) The idea of using limiting distributions as

invariants is due, in a slightly different form, to Bowen [B. 2] although implicitly it

occurs in [ F. P. ] .

(ii) Is it possible in contexts more general than the above to canonically

associate information cocycles to diffeomorphisms of compact manifolds pre-

serving smooth probabilities?

(iii) The main open problem posed by this chapter is to find a complete set of

invariants for regular and quasi-regular classifications of processes.

(iv) The problem of classification of endomorphisms is not dealt with in

these notes. The strict isomorphism problem, as opposed to the shift equivalence

problem, is considered in [V.11, [v. 2], [K. M. T. ] and [ P. W. ]. Important work

on the representation of endomorphisms as factors of Bernoulli endomorphisms

appears in [ R']. The information function IS = I(0 1S 1(B) of an endomorphism S

of (X, 03, m) is clearly an isomorphism invariant which can be used directly,

without the complications of an additional coboundary. Indeed, many endomorphisms

are completely characterised by the multivariate distributions of IS, is o S,

is o S2, ... (see [P. P.W.]).
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CHAPTER III: FINITARY ISOMORPHISMS

1. THE MARKER METHOD ([K. S. 1], [K. S.2])

1. Definition. Let (X., (.., m., T,) (I= 1, 2) be countable state processes

with state partitions a and I. A homomorphism TI T2 is called a finitary

homomorphism (or a finitary code) if each $ 1B, B E1, can be expressed as a

countable union of a-cylinders. When $ is an isomorphism, 0 is called a finitary

isomorphism if both $ and $-1 are finitary codes.

It is easy to see from the definition that a homomorphism T1 - T2 of

countable state processes is finitary iff for (almost all) x = (x
n

) E X1 we can

find integers k, Z ? 0 such that 0 has constant zero coordinate on the cylinder

IX-1 , ... , X0, ... , xk] . The integers k, I will, in general, depend on the

point X.

In the papers [K. S. 1] and [K. S. 2], Keane and Smorodinsky introduced a

method of constructing finitary codes. This method is loosely termed the 'Marker

Method'. It has since been used in a number of other papers (see for instance

[A. J. R. ], [J], [K. S. 3], [ P']) . In this section we illustrate the method in proving

2. Theorem [K. S. 2]. Two finite state Bernoulli processes with at least

three states and the same entropy are finitarily isomorphic.

The section is based on [K. S. 2]. In order to avoid digressing half way

through the proof of 2, we state first

3. Definition. Let U and V be finite sets with probabilities P and a

(on their power sets). A society from U to V is a map S from U to the power
set of V with the property that for any set B C U, p (B) Q (S(B)) where

S(B) = U S(b). If R and S are societies from U to V, write R < S if
bEB

R(b) C S(b) for all b E U. For a society S from U to V, define the dual
society S from V to U by letting b E S (g) iff g E S(b). If S. are societies

from U. to V. (1 i j) , define the product society S1 X ... X S, from
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U1 X ... XU
i

to V1 X ,,, X Vi by setting

(S1 x... X S
J
.) (b1, ..., b

J
.) = Si(b1) X ... X S

J
.(b.)

4. Proposition [K. S.1 1. (i) S is a society.
x * it

(ii) S1 X ... X Si is a society. Also, (S1 X , . , X S.) = S1 X , , , XS
j

(iii) For any society S from U to V there is a society R < S such that

card { g E V : Hb1, b2 E U, b1 * b2, with g E R(b1) n R(b2) I < card U.

Proof. (i) Let G C V, then b r{ S (G) iff G n S(b) _ 0, so that

S
*
(G)C= { b E U : S(b) C GC }. Hence

P(S(G)C) =1-P(S(G)) =P{b:S(b) C GCJ (Y (GC) =1-Q (G)

and it follows that Q(G) P(S (G)).
The second part of (ii) is straightforward. The first part of (ii) and (iii) may

be found in [K. S. 11, and their proofs read independently of the rest of the paper. //

The following lemmas help reduce the proof of 2.

5. Lemma. (i) Fix 0 < x0 < 1. The entropy of the probability vector

(x0, y1 , y2) increases as it becomes more uniform (i. e. (x0 , yl , y2) has greater

entropy than (x0, z1, z2) when I

l xp - y, I < x0 - z 1 ) .
k k

(ii) If M = Z m m. > 0 and M < 1, then - m.(log m.) > -M(log M) .
i=1 1 1 i=1 1 1

(iii) Suppose r0 , r1 > 0, r0 + r1 < 1 and that the entropy of the probability

vector (r0, r1, 1-r0 -r1) is strictly less than some h > 0. Then 1 - r0 - r1 can

be split to obtain a probability vector (r0 , r1, ... , rk) with entropy h.

Proof. (i) follows from the fact that the function

-xlogx-(1-x0 -x)log(1-x0 -x), 0<x<1-x0,

is concave, has its maximum at the point x = x-0 and is symmetric about this

point. (ii) follows from the fact that -log x (x > 0) is convex and decreasing. For

(iii) note that the vector r r 1-ro -r1 . 1-ro -r1
( o, 1> n n ) with n + 2 entries

has entropy tending to infinity with n, choose n large enough for its entropy to

exceed h and use a connectedness-continuity argument. //
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6. Lemma [K. S. 2 1. Let p = (p0 , ..., pa-1) and q = (q0, ..., qb_1) be
probability vectors with the same entropy h and with a, b > 3. Then we can find

a probability vector r = (r0 , .. , rc_1) such that h(r) = h, c ? 3 and
r0 E {p0 , .. , Pa-1)' r1 E {q0 , .. , qb-1 ).

Proof. Assume without loss of generality that p0 p1 > ... pa-1'
qo ' q1 '- ... ? qb_1 and Pa-1 - qb-1. Take r0 = Po , r 1 = 1 . Then

(r0, rl, 1-r0 -r1) is less uniform than (Po , Pa-1' 1-p0 -pa-i) and, by 5(i) and (ii),

h(r0, rl, 1-r0 -r1) `- h(po, pa-1' 1-PO -pa-i) `- h(p) = h.

Now use 5(iii) . //

Lemma 6 shows that, t o prove 2, it is sufficient to construct a finitary iso-

morphism between Bernoulli processes defined by p = (p0,
, pa-1) '

q = (q0, ' ' ' qb-l) where po = qo , a, b ? 3 and h(p) = h(q) . The state 0 will
be used as a 'marker' - the finitary isomorphism i) will have the property that, for

x = ( xn) , xn = 0 iff ($x) n= 0. We now set up the machinery for the construction of

the finitary isomorphism.

Let p = (po, ..., pa-1) be a probability vector, and let (X, (B, m, T) be

the Bernoulli process defined by it. Fix a sequence of integers, 0 < N1 <N2 <

This sequence will be specified later.

7. Definition [K. S. 21. A skeleton s is a positive integer r together with
a configuration of finite sequences of zeros and 'holes'

n
Ono 0nl 0

m
11 4 1m

with n. > 1 (0 < i m) 1 (1 < i m) and max { n, J <N min {n0 , n ) .

1
1 r m

Each n, specifies the length of a block of zeros and each li specifies the length of

a sequence of holes. r = r(s) is called the rank of the skeleton s. The length of s

is Z(s) = l 1 + ... + lm, A skeleton s' is a subskeleton of s if it has con-

figuration

0nt- 0nt+l -0nt,

1 1 1
t+1 t+2 t'
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for suitable 0 t < t' < m, and if r(s1) r( s) . Two subskeletons of s are said

to be disjoint if their corresponding indices {t+i, ... , t' I are disjoint (i.e. if

their holes are) . Subskeletons sl, ... , sj form a decomposition of s if they are

pairwise disjoint and the union of their indices is {1, .. , m write

s= s1 X ... X s
J
, after ordering according to these indices.

Note that a configuration of zeros and holes may be given more than one rank,

we distinguish between these as skeletons (with different ranks) .

8. Proposition. Each skeleton s of rank r > 1 admits a unique decompo-

sition into subskeletons of rank (r - 1) , called the rank decomposition of s.

Proof. If s is as in 7, the number of subskeletons in the rank decomposition

is given by the number of i with 1 < i m, ni > Nr-i (the number of 'long' blocks
of zeros) . Start at Ono and scan to the right until the first 'long' block is reached,

take this as the first subskeleton. Now scan until the next 'long' block to obtain the
n

next subskeleton. Continue until 0 m is reached. Uniqueness is clear, since no

'long' block (with ni ? Nr-i) can be internal to a subskeleton of rank (r - 1) . //

We say that a skeleton s appears in x E X if the holes of s may be filled
with elements of 11, 2, .. , a-1 ) to obtain a finite segment of x which is neither

preceded nor followed by a zero.

9. Proposition. (i) For almost all x = (x
n

) E X, either x0 = 0 or there
exists for each r ? 1 a unique skeleton sr(x) of rank r which appears in x
around the zero coordinate.

(ii) Given any sequence L1, L2, ... of lengths, we can choose

0 < N1 < N2 < ... such that for almost all x E X with x0 # 0 we have

1 (sr(x)) > Lr for large enough r.

Proof. (i) Suppose x0 # 0. To say that we can find a skeleton of rank r

around the zero coordinate means that we can find blocks of zeros of length not less

than Nr to the left and right of x0 . This is assured a. e. by the independence of the

process. Uniqueness is clear since the skeleton must end at the first block of zeros

whose length is greater than or equal to N r.

(ii) In fact we show that 0 < N1 < N2 < ... can be chosen so that for almost

all x = (xn) E X with x0 # 0, eventually 1 (sr(x)) ? Lr where 1 (sr(x)) is the
'past' length of sr(x) i. e. the number of holes to the right of the zero coordinate
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place. Take E -'0, small. For each r choose Nr (
+Pe)-Er , also ensuring

0 < Nt < N2 < ... . By the ergodic theorem, for almost all x E X we have

no. of occurrences of 0 in (xl, ..., x )
n

-+
PO

Suppose xp # 0 and Z(sr(x)) < Lr for some r > 1. Then

N +N Nr
> r > +£) >(PoZ(sr(x))-+Nr+N Lr+Nr

(*)

where N is the number of zeros in sr(x) between the zero coordinate place and the

right end block. Thus, if Z (sr(x))-< Lr for infinitely many r then x violates

(*). //

From p = (po, ..., pa-i) we obtain a new probability vector
_ P

p = (lppp ' 1-pp ' ... ' 1---) . Write g = g(p) for the entropy of p and denote by

P the measure given t o the setI i . . . . . a-1 } by p. Set

P. Pi
n = min 0 = max {-).

1-i:S,a-1 1-i a-1 1-PO

10. Definition. Given a skeleton s of length 1, let ff (s) 1, ..., a-i
and give this set t h e product of t h e measures µ on 11, .. , a-1 }. (s) is called

the filler set of s and the product measure, also denoted 1, is called the filler

measure. An element of 3: (s) is a filler of s. g = g(p) is called the filler

entropy of (X, (B, m, T).

It is important to note that for a skeleton s of rank r and length 1 and

F = (fl( f l ,.fl) E (s) , µ(F) is a conditional measure: µ(F) is the conditional

measure that F is the filler of s determined by x E X, given that sr(x) = s r.

Let { er
} be an arbitrary sequence satisfying 1 > E;, > 2z > ... > 0 and

decreasing to zero. We use it to define, for each skeleton s, an equivalence

relation on 5: (s). The definition is by induction on r(s) :

Let s be a skeleton of rank 1 and length 1 . For F = (fl, ..., fl) E T (s)
set

J(F) _ {1<i:l:µ(fi)µ(fi) ... µ(fi_1) >

For i = 1 the condition becomes 77 ? e-g(1-El) and we see that either J (F) = j6
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for all F Ea (s) or 1 E J(F) for all F E if (s). For F = (fl, ..., fl) ,
F' = (f,, ..., fZ) E if(s) put F - F' if f. = fi for all i E J(F). It can be

checked that F - F' implies J(F) = J(F'), so that - is a well defined equivalence

relation.

Suppose the J(F) and the equivalence relations have been defined for all

skeletons of rank less than r. Let s be a skeleton with rank r and length l .

Consider the rank decomposition of s, s = sl X ... X s., given by 8 and identify

3(s) = if ( s1 ) x ... x if(sj). For F= (fl, ..., fl) = (F1, ..., F.) where

F1, ... , F. are the subfillers for si, ... , s., put i(F) = U J(Fi) . Letting
i=1

k1, ... , kv be the increasing enumeration of the complement of j(F) in

11, .. , 1 ), set
_ -g(1-s )l

J(F) =J(F) U 1k.:l:5-iv, ( II µ(f ))µ(f ) ... µ(f ) >_ 1 e r },
1 kE J(F) k ki ki-1 ?)

For F = (fl, ..., fl), F' = (f. , ... , f 1i) E if (s) define F - F' iff fk - f k for
all k E J( F) . It can be checked by induction that for all s and F, F' E if(s)

F - F' implies J(F) = J(F1) and thus that the equivalence relations are well
defined. For s, let if(s) = 3 (s) /- and denote the class of F E (s) by F. If

r(s) > 1 and s = sl x ... x s, is the rank decomposition of s, write
JJ

if (s) = II if(si) . Denote the class of F in T (s) by F. It is easy to see that
i=1

F= {F'=(f/. .. , fi) E `.F(s) :fi=f1 for all i EJ(F) }.

It follows that each element of T (s) is a disjoint union of elements of if(s). We
give if(s) and if (s) the (quotient) measures obtained by considering each equiva-

lence class as a subset of if (s) .

11. Lemma. For a skeleton s of rank r and length 1 ,
(i) µ(F) . e-g(1-Er) l

for all F E 5 (s) .

(ii) card U(s) < eg(1-E r-1) l whenever r > 1.

Proof. (i) We use induction. Let s be of rank 1 and length 1 , and let
F = (fl, ..., fl) E if (s). If J(F) then F = if (s) and the inequality is clear.

If J(F) = { 1, ..., i) then

µ(F) =µ(f1) ... µ(fi)
1 e-g(1-£1)l > e-g(1-61)l
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by the definition of J(F). Assume (i) for ranks less than r. Let s have rank r,
length I and rank decomposition s = si x ... X si. Let F = (ft , ... , fl) E T(s).
If J(F) = J(F) then

µ(F) > 11
a -g( 1-Er-1) li

i=1

(where 1 i is the length of si)

-g(1-Er-1)I - -g(1-Er)l
=e e

If J(F) = J(F) U {k1. .... ki } then

1.1(F) _ ( lI A(Q) µ(fk1) ... µ(fk µ(fk
kEJ(F) i-1

µ(fki) -g(1-Er) l -g(1-Er)1e e

77

(ii) Let s have rank r > 1 and length 1 . Let s1 X ... X s. be its rank
decomposition, where s

1
has length li . From (i), for each 1 i< j,

g(1-Er)li
card (s

1
.) <e -1 so that

card (s) = 11 card Y(s.) g(l
i=1 1

12. Lemma. (i) For any 6 > 0 and r > 1, there exists 10 = l 0 (6, r)
such that if s is a skeleton of rank r and length 1 ? 10, then for F E (s)

outside a set of measure at most 6,

-g(1-Er) Z
µ( F) 5I e

( ii) For any 6 > 0 and r > 1, there exists 1 1 = 11 (6, r) such that if s
is a skeleton of rank r and length I ? l t , then for F E `,f (s) outside a set of

measure at most 6 we have,

card J(F) 1 - _ 2g
E

log 77
l Ilogol

r_L
logo*

Proof. (i) Let F = (f1 , ... , fl) E T (s) . If J(F) * 11, then,

by definition, 11(F) = ( II 11(fi)) < 1 e
g(1-Er) L , if i(F) 1, ... , l) , then

iEJ(F)

µ(f.)) e-g(1-Er) l for some J C { 1, ... , l } of cardinality l - 1.
iEJ 1 77
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Hence, J(F) = 11, .. , Z } implies µ( F) >
e-g(1-sr) Z

and we need only estimate

the measure of F E if (s) with µ(F) >
e-g(1-er) l

. But each function -log µ(fi) ,

1 I:51, has integral g and, by the weak law of large numbers, the measure of
F E `.f (s) with µ(F) > e-g(1-er) l tends to zero as 1 -* o0.

(ii) If F E 5(s) satisfies card J(F) < 1 -
to B

er Ilo
log e' then

S

µ(F) :Sµ(l) 01 -cardJ(F)

7 I

µ(
F) Bog 9 log 9 / (since 0 < 9 < 1)

1 e-g(1-er)Z a-2gerl
71 (since J(F) # {1, ..., l})

77

-g(l+er)l
=e

and (ii) follows by an application of the weak law of large numbers as in (i). //

Let (X1 , (9 1, ml, Ti) and (X2, ale , m2, T2) be Bernoulli processes

defined by probability vectors p = (po, ..., pa-1) and q = (q0, ..., qb-1) with

po = qo and h(p) = h(q) . Observe that the filler entropies of the two processes

coincide

a-1 p. P. b-i q. q.
L e. g = g(P) 1-R log(1po ) = g(q) 11-1go log(1_go)

Now that we have fixed our two Bernoulli processes, we may specify the sequence

0 < N1 < N2 < ... used in defining skeletons. Note that in 12 1 ,( 6 , r) and

l i (b , r) do not depend on this sequence. Choose 1 > b r > 0 with b r 10. For
i = 0, 1 let 1'(6 r) be the maximum of the 1 (b r) for the two processes

i r i' r'
(X1, (131, m1, Ti) and (X2, (R 2, m2, T2). Choose a sequence { Lr) such that

Lr 2t max { l 0 (b r' r), 1i (b r, r) I and lim Lr(er_1 -8) =1 (e. g. also
r-+ oo

require Lr ? (Sr-1 - Cr) Then lim Lr = 00 also. Now use 9(ii) to choose
r-"o

0 <' N1 < N2 < ... corresponding to L1, L2L 2 , Observe (from the proof of

9( ii)) that, as po = q0 , the sequence { Nr } will then satisfy 9(ii) for both

(X1, a1, m1, Ti) and (X2, 632, m2, T2).
We shall put

P. P.

71 i = min { } , 01 = max t, 1,71,=, 712 = min
i 1-PO 1-isa-1 1-po 1-q0
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q.02 = max
{ 1-qo )

1 Si5b-1

If s is a skeleton, the filler set of s for (XI, (BI, ml, Ti) will be denoted by

51(s) and the filler set for (X2, m2, T2) by 52(S) and so on. The filler

measure on `5.(s) is denoted by I-Ii(i = 1, 2). For each skeleton s we shall define

a society R. R8 is from I1(s) to 92 (s) if r(s) is odd, from a2 (s) to 51(s)

if r(s) is even. Again, the definition is by induction on r(s) :

If s is a skeleton of rank 1, let S be the society from S 1(s) to 2 (s)

defined by S8(F) = 3:2 (s) , F E 5:1(s) . Let Rs <S
s

be a society chosen as in 4(iii).

Suppose Rs has been defined for all skeletons of rank r - 1 and r is even. Let s
be a skeleton of rank r and rank decomposition s = si X . , . X s.. For each

i = 1, ... , j we have a society R from 5i (s
1
.) to 5:2 ( s

i
) . Each R is a

s. s.

society from 5:2 (sI .) t o S1(s.) so that S =R* X ... X R* =(R X... X R
I s s1 S. Si sj

is a society from i2 (s) to 51(s) . Since each element of 51(s) is a disjoint

union of elements of 5i (s) , we may regardM Ss as a societyfrom 52 (s) to 51(s) .
Let R < S be a society from 5:2 ( s) to 3i (s) , chosen as in 4(iii) . Now regards s
Rs as a society from 5:2 (s) to 51(s) . Since T2 ( s) has fewer elements than 52 (s) ,

it is important that the refinement comes before passing to I2 (S). This

provides the inductive step for proceeding from odd ranks to even. The procedure for

passing from even ranks to odd ranks is entirely similar.

Roughly speaking our construction will be as follows:

We use the Rs to define the finitary isomorphism 9) : Xi - X2. For
x = (x

n
) E X1, xo # 0, let Fr (x) be the filler of sr(x) for x. By 9(i) , s r(x)

and Fr(x) are defined for almost all x with xO # 0. If xO = 0, take (Ox) 0 = 0.

If xO # 0, we show that (almost surely) there is an even r such that Fr (x) is

contained in R5 ( x) (G) for only one G E 2 (sr(x)) and G has the zero coordinate

place of x fixed; we take ($x) 0 to be this fixed symbol. Shifting, we obtain

$ : Xi - X2. 1k : X2 - Xi is similarly obtained, using odd ranks instead of even.

We show = ¢-I and that they satisfy all the requirements.

Put XI(00) = { x = (x n) E Xi : xO # 0 1. For almost all x E X1(°O)
, sr(x) will

be as in 9(i) , Ir(x) will be its length and Fr(x) will be the filler of sr(x) obtained

from x. We shall distinguish the hole of sr(x) at which the zero coordinate of x
occurs. This hole will be referred to as the zero coordinate place (of x in sr (x)).
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Put
X1

(r) = { x EXi(`°) : Z r, (x) ? Lr, for all r' ? r }.

The sets X,(r) are increasing and, by 9(ii) , ml (X1(r)) -' ml (X1(°)) as r
For a skeleton s of rank r>1 and length 1, a hole k E 3 1, ... , 1 } and

G = ( g 1 , ... , g1) E 2 (s) , we shall say that G fixes k (at the symbol gk) if

gk = gk for all G' = (g11, ..., gi) E G. It is easy to see from the definition of

the equivalence class G that G fixes k iff k E J( G) .

Let r be even. Let sr-1 and sr be skeletons of ranks r - 1 and r such
that sr-1 is a subskeleton of Sr and such that they have lengths 1 r-1 > Lr-1 and
lr ? Lr. By the definition of the society R. , fewer than card(T2 (sr)) elements

r
of T1 (sr) belong to the image of more than one element of F2 (sr) . Thus, by 12(i) ,

the measure of the set of F E F 1 (sr) for which there exists no unique G E (Sr)
such that F E Rs (G) , is less than

r
I e-g(1-Er)lrr+card(72(sr))
711

$
+ 1 eg(1-er-1)lr

a
g(I-Er)lr

r 11
(by 11(ii))

+ 1 e-g(Er-1 _gr) Lr
=r

77,
r

Therefore, the conditional measure of those x E X, (sr-1' sr) _ { x E X1(-)

sr-1 (x) = sr-l' sr(x) = sr I such that Fr (x) RS (G) for some unique
r

G = G(x) E 3:2 ( s ) is bounded by 4 . Note that 4 ' 0 and rr r r
Now let F E a, (sr) , k E t i , r-1 } and observe the following con-

sequence of the invariance of the measure m1 Given x E X1(sr-1' Sr) and

Fr(x) = F, the conditional measure that the zero coordinate place of x is at k is

simply
Z
1 . It follows that, for any G E 3:2 (sr) , the conditional measure of

x E X1(sr-1' sr) such that Fr(x) E Rs (G) and G fixes the zero coordinate place
of x is r

Z1 {cardJ(GI8 }µ1(Rs (G)) > 11 {card J(GIa )}µ2(G),

r-1 r-1 r r-1 r-1

where GIs denotes the subfiller of G for sr-l. By 12(ii) we deduce that the

conditional measure of x E X1(sr-1, sr) such that Fr (x) E Rs (G) for some G
r
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which fixes the zero coordinate place (of x) is greater than or equal to

(1- 2g a 109 712

Ilog 02 I r-1 1r-1 log 02 (1 - Sr-1

1 - 2g e - log rh - S
Ilog 02 I r-1 Lr-1 log 02 r-1'

In other words, the conditional measure of x E X1(sr-1, sr) such that Fr(x) % Rs(G)

for all G which fix the zero coordinate place of x' is less than or equal to r

= S + 2g
E

+ log 712

r r-1 1109 02 I r-1 Lr-1 log 02

Note that -' 0 as r-. ao .r
As sr-1 and sr run through all skeletons of ranks r - 1 and r where

sr-1 is a subskeleton of s r, 1(s ) =:! L and 1 (s ) >_ L , the setsr-1 r-1 r r
X1(sr-1' sr) forma countable partition of { x EX1(°°) :1 r-1(x)

Lr-1 1 (x) > Lr } D X,(r-1) . Consider the m1-measure of x E Xl such that

Fr (x) E Rsr(x)(G) for a unique G = G(x) E 32 (sr(x)) and this unique G(x) fixes

the zero coordinate place of x. It follows from the estimates of the last two para-

graphs that this measure is greater than

m1(Xl(r-1)) - 4r - r '

which tends to ml (X1(00)) . Thus (Ox) o givencan be defined a. e. In fact, any

infinite sequence of even r, we can find for almost all x an infinite subsequence

all of which may be used to define (¢x) 0 . The next lemma shows that (Ox) o does

not depend on which r is chosen.

13. Lemma. Let x E X1 let r be even and let i E { 1, .. , b-1 }.

Suppose Fr(x) E Rs (x) (G) implies that G E g2 (sr(x)) fixes the zero co-

ordinate of x at the symbol i. Then this statement remains true (for the same

symbol i) when r is replaced by r + 2.

13 may be checked by going through the inductive definition of the societies R .
s

We have shown that (Ox) 0 is well-defined for almost all x E X1. Shifting,

we obtain 0 which will then satisfy x'11 = T20. For all x = (x n) E X1 with

xo = 0 we have (Ox) 0 = 0. If xo * 0 then, almost surely, we can find an even r

such that for all x' E X1 with sr(x') = s(x) and Fr(x') = Fr(x) we have
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($x') 0 = (Ox) o. In other words, 0 is finitary. It follows that $ is measurable.

14. Lemma. M2 = m1 ° 1

Proof. It is enough to verify this for cylinders [i0 . .... in]

..., in E 10, ... , b-1 }. It is not hard to see from the construction of

through societies that m1(0-'14 , .. , in]) < m2 [ i0 , .. , in] . But

{ I [i0 , ... , i ] :
n

i0 , ... , i
n

E {0, ... , b-1 }} is a partition of XI and

m2 in] = 1, so equality must hold on each cylinder.
i0,...'In

Working with odd ranks instead of even, we obtain in the same way a finitary

homomorphism T2 14 TI. We complete the proof of 2 by showing W= 0-1.

15. Lemma. 11I = 1 .

Proof. Let x = (xn) E XI and put Ox = y = (yn) E X2. It is sufficient to

show (IIy) 0 = x0. If x0 = 0, this is clear. If x0 # 0 then, since xn = 0 iff
yn = 0, we have sr(x) = sr(y) for all r > 1. Moreover, if we put sr= sr(x) = sr(y)

then in each sr the zero coordinate places of x and y coincide. Choose even r

such that Gr-1(y) , the filler of sr_i given by y, is contained in Rs (F) for a

unique F E a 1 (sr-I) and this F fixes the zero coordinate place (at the symbol

('Py) 0). Also insist that Fr(x) is contained in R5 ( G) for a unique G E 3:2 (Sr)
r

and that this G fixes the zero coordinate place (at the symbol y0) . Such r may
be found since any infinite sequence of even (reap. odd) numbers has an infinite

subsequence all of which may be used to define $ (resp. q/). Observe that, by

definition, F contains F (>Ly) and G contains Gr-1 (Y) Rs (Gr-1(y)) will
r-1

consist of the elements of (sr-I) whose union is F. Hence S. , and R. , map
r r

Gr(y) = G to a set whose elements fix the zero coordinate place at (qy) 0. But

Fr(x) ERs (G).
r

According to Keane and Smorodinsky [K. S. 2], entropy is a complete invariant

for finitary isomorphisms of all finite state Bernoulli processes (i. e. the restriction

to processes with three or more states may be removed from 2) :

16. Lemma [ K. S. 2]. If p = (p0 , p1) is a probability vector, we can find a

probability vector q = (q0 , .. , qb-I) with b > 3, h(q) = h(p) and q0k-iq1
=po p1
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for some k ? 2.

Proof. Choose q0 with max 1p0, pl } < qo < 1. Since (R-)
k-1

pl - 0 as
o

k-. -o, we may find k ? 2 such that if q0 = ( ) k-lpl then q0 + q1 < 1 and

h(qo, q1, 1-q0 -q1) < h(p). Now use 5(iii). //

Thus, it suffices to construct a finitary isomorphism between the Bernoulli

processes defined by p and q with h(p) = h(q) and
pok-lpl _ q0k-lq1.

In

[K. S. 2] Keane and Smorodinsky remark that this can be done by adapting the marker

method to use the word 0... 01 of length k as a 'marker'.

2. FINITE EXPECTED CODE-LENGTHS [ P. 7]

17. Definition. Let $ be a finitary homomorphism from a countable state

process (X1 , (R 1, m1 , T1) to another, (X2 , (132 , M2, T2). Let a and A denote
the state partitions of the processes. By definition, each 1 B, B E 1, may be

written as a countable union of a-cylinders. By first expressing '1B as a coun-

table union of disjoint cylinders, then combining these cylinders into possible shorter

ones, we see that 1 B can be written in a disjoint way as 1 B = U CB where
n n

C
n
B are Hence we obtain a partition of X1 into a-cylinders,

( *) {CB:BE1B=U CB}.
n n

n

Recall that an a-cylinder has the form T1 A f1 ... f1 A. fl ... fl T1-kA. , where
i_Z 10

1k

A. ... , A A. E a, Z ? 0, k > 0. The length of this cylinder is 1 + k + 1, and
1-1 k

its future length is 1 . At x E Xl, define the code-length 1(x) of l) (w.r.t. (*) )

and the future code-length f(x) of 0 as follows: Select the cylinder CB of the partition

(*) to which x belongs and let 1(x) and f(x) equal the length and future length,

respectively, of this a-cylinder. Thus 1 and f are functions of X1 into

10, 1, 2, ... }. The expected (future) code-length of ' is f 1 dml (f f dml).
If 0 is a finitary isomorphism, we may interchange the roles of the processes and

replace 0 by 0-1 to obtain the inverse code-length l'( x) of $ at x E X2 and
the inverse future code-length f'(x) of 0 at x E X2. Then the expected inverse

(future) code-length of 0 is f " dm2 (f f' dm2) .

In [K. S. 1] Keane and Smorodinsky show that for any two Bernoulli processes,

q
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one having strictly greater entropy, there is a finitary homomorphism from the one

with the greater en` ropy to the other. It is remarked at the end of the paper that the

homomorphism constructed has finite expected code-length. Thus, it is natural to

wonder if theorem 2, obtained by methods similar to those in [K. S. 11, can be

strengthened to establish finitary isomorphisms with finite expected code and inverse

code-lengths between Bernoulli processes of the same entropy. The aim of this

section is to show that this is not possible in general.

Let (Xi, ()3i, mil Ti) , i = 1, 2, be ergodic countable state processes with

finite entropies. We shall prove that any finitary isomorphism T1 4 T2 which has

finite expected code and inverse code-lengths must be quasi-regular. Then, by

2. 51, the information cocycles I
T1

and I
T2

° 0 are cohomologous, and the in-

variants of Chapter II may be used. For instance, the group invariant A shows that

between the Bernoulli processes defined by (1 1 1 1)
and

(1 1 1 1 1) (both4 4 4 4 2 8 8 8 8

have entropy log 4) any finitary isomorphism must have infinite expected code-

length, or inverse code-length. Similarly, no finitary isomorphism between any two

of the Markov chains defined by the matrices (p q) , (p q) , (q p) (0 < p < 1,
p q q p p q

p z, q = 1 - p) can have finite expected code-lengths.

Let (X1 , (B1 , ml, T1) and (X2, 62, m2, T2) be countable state processes

with state partitions a and h. If T1 ' T2 is a finitary code and f is its future

code-length, we put A = {x E X1 : f(x) ? n } and a = m1(A) for n ? 1. Then
00 n n n

f f dm1 = Z ari Moreover:
n=1

00 00
18. Lemma [ P. 71. For N 0, d(O 1 " T21(3, " T1I c) :52 F a .

i=0 7=-N k=N+1
k*

Proof. Fix N ? 0. Write (E) = { B1 , B2 , ... } and write each

1(Bl) = U Cn , the unique minimal disjoint union of a-cylinders determining f.

For each l 1 let Bl be the union of those Cn whose future length is less than

or equal to N. Then B1 C (BI) and B1 E " T1-1a. We have f N on
-N

00

U B' and f >N on its complement, which must therefore be A' Hencel1=1 N+1

B1' U A1, B2', Bg', ... } is a partition in " T1 a and
V -N

d($1(3,
00Tl-I

a) :5d($1A,b'): 2a
-N N+1

It follows that for each i > 0,
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d(Ti-1 1j3, "
T1-la)

=d($ 1I$, " T1-ja) s 2aN+i+l00 '0
-N -(N+i)

and, by 2.46 (iv) ,

n 00

d(" T1-0 1[, " T1-1 a) 5 2 Z aN+i+l < 2 1 ak .00

i=0 j=-N i=0 k=N+l

The result follows by letting n '' 00 and using 2. 46( vi) . //

19. Theorem [P. 7]. Let 0 be a finitary isomorphism between two ergodic

countable state processes (X., 03,, m. , T.) (i = 1, 2) whose state partitions have
1 1 1 1

finite entropies. If 0 has finite expected future and inverse future code-lengths

then the processes are quasi-regularly isomorphic through 0.

Proof. Let a and (1 denote the state partitions of the two processes, and
eo °° 1 °°

put a = o T1 a, I = o T2 . Since f f dm1 = an < 00, 18 shows that for
1

N large enough, d($ 1 j1 , TN a) < 2. Since
n-

N
H(TINO Ia) =H(" T11ala) <NH(a') <

i=1

2. 47 shows that d( TNa , a) < 2 also. It follows from ( the proof of) 2.50 that

d('/, a) < 2. Similarly, considering 1 instead of 0 and using f f' dm2 < 00,

we obtain d(a , 0-'A-) = d( )a , ()) < 2.

Since f :1 and f' < V, the word 'future' may be deleted from the statement
of 19.

If (X, (B, m, T) is the Markov chain defined by the matrix P with left

invariant probability vector p, pP = p, its inverse (shift) is the Markov chain

(X*, ()3* m*, T *) defined by the matrix P* with P*(i, j) = p(j) P(j, i) /p(i). Note
that pP*= p. (X, 03, in, T) is finitarily isomorphic to (X* (31* m*, T*) by an
isomorphism which has finite expected code-lengths:

20. Exercise (R. Butler and W. Parry). Suppose (X, 43, m, T) has state
space 10, 1, ... , k-1 }. Define 0 : X -1 X* by requiring

0(10, i1 , 12, ... , it , 0]111) = [0, it , i1 -11 -1 li , OF

for all cylinders [0, i1. .... it , 0]111 with i1. .... it E 11, ..., k-1 ). In this

construction, we are using 0 as a 'marker' (i.e. 0 maps zeros to zeros) , and we
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are reversing the words between zeros. Show that 0 is a finitary isomorphism and

that it has finite expected code-lengths.
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CHAPTER IV: BLOCK-CODES

1. CONTINUITY AND BLOCK-CODES

1. Definition. Let (Xi, (l , mi, Ti) be finite state processes with state

partitions ai (i = 1, 2). A homomorphism T1 T2 is called a block-homomorphism
p

or a block-code if there exists p E IN such that T11a, ? 0-1 a2 i. e. if each
f=-p

0_t A (A E o2) can be expressed as a union of sets in p T11a 1. 0 is called a
f=-p

block-isomorphism or a faithful block-code if it is an isomorphism and both 0, 0

are block codes.

We recall our assumption that all finite state processes are reduced; the truth

of the following result depends on this.

2. Proposition. If 0 : X1 - X2 is a block-homomorphism between two finite

state processes (XI, 431 , m1, T1) and (X2, 122, M2, T2) then there exists a

continuous measure-preserving surjection r' : X1- X2 such that 0'T, = T2 0'

and 0'=O a. e.

Proof. It is easy to see that 1 C is a finite union (a. e.) of cylinders when

C C X2 is a cylinder. Hence for each closed-open set U2 C X2, 1U2 = U1 a.e.

for some closed-open U, C X1. U1 is uniquely determined as m1 is positive on

non-empty open sets; we put ,/U2 =U,. tG is thus a map from the closed-open subsets

of X2 into the closed-open subsets of X1 which preserves finite unions and intersections
n

Let x EX1 and let Cn E " T210-2 be such that x c (Cn). As x E n 1/i (Cn) , lip (Cn) }
1=-n nEIN

and, hence, { Cn } have the finite intersection property. Therefore fl Cn is not
nEIN

empty by compactness and, since a2 is a topological generator, fl C
n

is a
nEIN

point; we take y,'x to be this point. It is easy to see that ¢' is continuous and

$1T1 = T2 $'. Moreover 0'-'B = 1B a. e. for each closed-open B C X2 and,

hence, for each B E 632 so that 0' = $ a. e. and 0' is measure-preserving.
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Finally, 0' is surjective as $'(XI) is a compact (closed) set of measure 1. //

Using the fact that the closed-open sets of a finite state process are finite

unions of cylinders it is easily seen that a continuous homomorphism is a block-

code. Thus, according to 2 the terms block-code and continuous homomorphism are

(essentially) synonymous. It should also be clear from 2 that block-isomorphism

and measure-preserving homeomorphism are synonymous terms:

3. Corollary. If $ : XI - X2 is a block-isomorphism between finite state

processes (XI, Q31 , ml, TI) and (X2, 122, m2, T2) then there exists a measure-

preserving homeomorphism 0' : X1 - X2 such that O'TI = T2 0' and 0' = 0 ae.

4. Definition. If (X, (R, m, T) is a finite state process, we define the

winding numbers groups of T, W(T) , to be the group generated by the set

im(C) : C is a cylinder). Evidently,

W(T) = { f f dm : f : X -eZ and f is continuous).

It is easy to see that if TI 4 T2 is a block-code then W(T2) C W(TI).

Therefore the winding numbers group is an invariant of block-isomorphism.

q

5. Exercise. If T1, T2 are the Markov automorphisms defined by (p q)q p
(p q) respectively, check that

W(TI) =Group{2pngm:n, m E N)

W(T2) = Group lpn qm : n, m E IN).

This indicates that T2 could be a factor of TI by a map which is at most 2-to-1.

Show that this is the case.

Evidently block-isomorphisms are regular and the invariants of Chapter II are

valid for block-isomorphisms. For instance the Markov chains defined by the

matrices (p q) , (p q) ,
(Cl

p) are not block-isomorphic. Moreover, the analoguep q q p p q
of 2. 31 is valid for block-isomorphism.

In the next section we shall consider bounded-to-one block-codes (i. e. block-

codes 0 for which there is a constant K such that 1 I (x) I < K for all x) and

show that, with the exception of the A-invariant, all invariants of Chapter II can be

extended to bounded-to-one codes. That the group A is not in general invariant
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under bounded-to-one codes may be seen from 5.

2. BOUNDED-TO-ONE CODES

We first prove a well-known lemma.

6. Lemma. If T1 4 T2 is a bounded-to-one homomorphism between finite

state processes (X
1

43 m1,, T
i
,) (i = 1, 2) then h(T1) =h(T2).

Proof. It is clear that h(T2) h(T1), we show h(T2) ? h(T1). Let a,
a' be the state partitions of X1, X2 respectively, and put h _ 1 a'. By a stan-
dard result in the theory of Lebesgue spaces (see [R.1]), there is a finite partition

1 = Y " I/ T1113. Puttingy such that G1 =Y " IG2 i. e. I., T1a
-00 -°o

00 00

TI-1j, Y _ we have y " T1nA 1 ($1. Hence, given E> 0,
i=1 i=1

H(y Iy " T11/3) < E for large enough n and

h(T1) = H(Y " T1nIIY " T1n/' )

E+H(TInPIT, 11J3) _ E+h(T2).

Since E > 0 maybe arbitrarily small, h(T1) < h(T2). //

7. Proposition [P. 5]. If T1 4 T2 is a continuous homomorphism (block-

code) between Markov chains (Xi, (Ail Mil Ti) (i = 1, 2) then 0 is bounded-to-

one iff h(T1) = h(T2) .

Proof. If 0 is bounded-to-one then h(T1) = h(T2) by 6. Conversely,

suppose h(T1) = h(T2). Let a, a' be the state partitions of X1, X2 respectively,
and put lA = 1 a'. We may assume without loss of generality that a > A (Replace

n
a by " T11a if necessary.) Now, writingin
using the fact that a, 0 are Markov,

n n
all = " TI-10, Un = " T1-1!

and
i=0 i=0

I(Q j3) =I(an) -I((1)

=f+f ° T1 +... +f ° TIn-1+(I(a)° TIn-I(13) ° Tin)

for f = I(a I TI-1 a) - I(/3 I T1-1(3) =I
T1

- I
T2 o

¢. Therefore
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0 :5 I(anipn) :5f+... +f ° TIn-1 +K

for some constant K. Put F = lim inf (f + f ° TI + ... + f ° TIn-1) so that

F ? -K. By Fatou's lemma f F dm1 < lim inf(n f f dm1) = 0 since f f dm1 = 0,

so F is integrable. Now, given s > 0, we see by recurrence that for almost all x
F(x) - F(T1nx) = f(x) + ... + f(TIn-1x) < e for infinitely many n. Hence

F = lim inf(f + ... + f ° Tn-1) < 0 also holds and we conclude that

I(QQ I ( ) f + ... + f ° Tn-1 + K = F - F ° T In + K 2K for all n E IN. If

A E B E Pn and A C B we have by considering the value of I( an I (Sn) on A,
m(A) > e-2K

m(B) so that the number of A C B, A E an is bounded above by

e2K. Since this upper bound is independent of n and of B E (3", is at most

e2K-to-one. //

8. Corollary [C. P. ]. If (XI , TI) and (X2, T2) are topological Markov

chains and if 0 : XI -' X2 is a continuous surjection with )TI = T2 0 then 0 is

bounded-to-one iff TI, T2 have the same topological entropy.

Proof. For i = 1, 2 we denote the topological entropy of T i by h(T
1
.) and

the entropy of T i with respect to a T 1.-invariant probability m on X
I
. by h

m
(T 1.) .

Suppose 0 is bounded-to-one. Clearly h(TI) > h(T2). Let m1 be the

unique Markov measure on XI with hm (TI) = h(TI) (see 2.26). m1 ° W 1 is
1

T2 -invariant and, by 6,

h(TI) =hMI(TI) =hml o 0_1(T2) 5 h(T2)

Conversely, if h(TI) = h(T2) let m2 be the unique Markov measure on X2

with hm2 (T2) = h(T2) . Using the exercise to follow, find a TI -invariant probability

m1 such that m1 ° $ 1 = m2. Now

hMI(TI) ' hm2(T2) =h(T2) =h(TI)

and, by the uniqueness of maximal measures, m1 is Markov. Considering 0 as a

continuous homomorphism between (XI, TI, m1) and (X2, T2, m2), 7 shows that

0 must be bounded-to-one. //

9. Exercise. Suppose Ti : X
1
. IX

1
. are homeomorphisms of compact metric

spaces (i = 1, 2) and let 0 : XI - X2 be a continuous surjection satisfying
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OTt = T2 0. Let m2 be a T2 -invariant probability. Note that the map f 1-+ f o 0 :

C(X2) -, C(X1) is injective and use the Hahn-Banach theorem to show that there is

a T1-invariant probability m1 with m1 0 1 = m2 .

10. Proposition. Let (X1 , 01 , m1, T1) and (X2, G2, M2, T2) be Markov

chains of the same entropy. If 0 : X1 -. X2 is a continuous surjection with

OT1 = T2 0 then 0 is measure-preserving iff

I
T1

= I
T2

o O+ g o T1 -g

for some continuous g.

Proof. Suppose 0 is measure-preserving. Pick p such that

P o0

_ 0 1 at < " T11a where a, a' are the state partitions. Put a = " T1- 1a,
-p 0

oO -iO T1 Q. In order to apply 2. 7 we must show that I(a is finite.

We see from 7 that ¢ is bounded-to-one or, equivalently, that q)- 1 defines a

bounded-to-one map between cylinders. It follows that we have a bounded-to-one

map on the one-sided level and that there exists a finite partition Y such that

Y " h = a . Now

H( CY
IT1-P.6 )

P-1
H(a Y \/ \' T1 1hIT1-P6

0

`-H(Y) +pH(A) +H(a IY"l') =H(Y) +PH(I).

Hence I( O L- is finite and we may apply 2. 7 to obtain

I
T1

=I
T2

oq+goT1-g

for some finite g. However, as 0 is a block-code, I
T1

- I
T2

o Q is a function of

finitely many coordinates and, by 2. 42, g is a function of finitely many coordinates

and therefore continuous.

Conversely if I = I o 0 + g o T1 - g for some continuous g, 2.24 implies
m1 m2

that

f Im1 dm1 = J Im2 o O dm1
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=fIm2d(mi o01) > fIm1o¢-ld(m100-1)=fIml dm1.

Therefore f Im2 d(m1 o 0-1 ) = f Im1 0 -I d(m1 o 1) and the uniqueness in 2.24

shows that m1 o I
= mZ . //

With the exception of the group A, all invariants of Chapter II depend only on

the cocycle-coboundary equation holding, sometimes with restrictions on the co-

boundary. The coboundary in the cocycle-coboundary equation given by 10 satisfies

all these restrictions. Hence all invariants of Chapter II other than A are valid

for block-codes between Markov chains of the same entropy. In particular, the

following holds for Bernoulli processes:

11. Proposition. Between Bernoulli processes given by the probability

vectors p and q of the same entropy, there are no block-codes unless q may be

obtained from p by a permutation.

11 appears in [T] and was also proved jointly by A. del Junco, M. Keane,

B. Kitchens, B. Marcus and L. Swanson.

3. SUSPENSIONS AND WINDING NUMBERS

In this section we justify the term "winding numbers" of definition 4. Fix a

finite state process (X, 63, m, T).

12. Definition. Let X be the topological space obtained from X X [0, 1]

by identifying (x, 1) and (Tx, 0) for each x E X. Give X the (quotient)

a-algebra d3 and measure m obtained from the a-algebra Q3x ()30 , where 03o

is the Borel 9-algebra of [0, 11, and from the product measure of m with Lebesgue

measure. Let I Tt : t E IR } be the flow obtained from: Tt(x, y) = (x, y + t) if

0 < y+t < I. (X, 1, m, Tt), or simply { Tt), is called the suspension of

(X, (B, m, T) (or of T) .

X is compact and metrizable and 03 is the Borel Q-algebra of X. {Tt I

is a continuous one-parameter group of homeomorphisms which may be described

more precisely as

T (x vl =
(Tnx, y+t- n), 0<y<1-(t-n)

n+l +t - _11 <1 (t n) -(T x [n, n+l) ., y , y 1 when t
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It should be clear from this that {Tt i preserves m. It is not difficult to check that

{ Tt } is ergodic when and only when T is ergodic.

13. Definition. The Bruschlinsky group Br(Y) of a compact metric space

Y is the group of all continuous maps to the circle K modulo the subgroup of

functions homotopic to a constant map.

It can be shown that Br(Y) is isomorphic to Ht(Y, Z) , the first Cech

cohomology group of Y; henceforth we shall identify these two groups.

14. Lemma. Each continuous function f : X -> K is homotopic to a map of

the form g(x, y) = exp(27riM(x)y) where M : X - Z is continuous.

Proof. We can write f(x, 0) = exp(271 ir(x) ) for some continuous r : X -' 1R,

since X is zero-dimensional. Put

h(x, y) = exp[ 27ri(r(x) (1 - y) + r(Tx) y) ] .

h is homotopic to a constant map and h(x, 0) = f(x, 0). Therefore the map

91 (x, y) = f(x, y) /h(x, y) is homotopic to f and 91 (x, 0) = g1(Tx, 1) = i for

all x E X. For each x E X let M(x) be the number of times the loop g1(x, y)

wraps around K as y increases from 0 to 1. Then M : X - Z is continuous and,

for each x E X, g(x, y) = exp(27riM(x)y) wraps around K the same number of

times as g, (x, y). Hence g and g1 are homotopic. //

We have just seen that each continuous f : X - K has within its homotopy

class a function exp(2 7riM(x) y) , where M : X -, Z is continuous. Suppose the

continuous function N : X Z is such that exp(27riN(x) y) is in the same homotopy

class. We may write exp[ 2 7ri(M(x) - N(x) ) y] = exp[2 7rir(x, y) ] for some con-

tinuous r : X -> 1R with r(x, 0) E Z for all x E X. Then (M(x) - N(x) ) y =

r(x, y) + P(x, y) , where P(x, y) E Z. But, for each x E X, P(x, y) is con-

tinuous in the range 0 < y < 1 so that P(x, y) = P(x, 0) for all 0 y < 1.

Write P(x) = P(x, 0). Now,

P(Tx) = -r(Tx, 0) = -r(x, 1) = P(x) - (M(x) - N(x) )

i. e. N(x) - M(x) = P(Tx) - P(x). We have proved

15. Theorem. H1(X, Z) is isomorphic to the group of continuous maps
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M : X - Z modulo those of the form P , T - P, P : X - Z continuous.

Suppose {St) is a one-parameter flow on a compact metric space Y with

invariant probability µ. Recall that f : Y - K is said to be differentiable with

respect to the flow at y E Y if the limit lim

t
(f(Sty) - f(y)) = fl(y) exists. If

t-+0 ,
1f : Y - K is continuously differentiable put Wµ( = 2ri f f(y) dµ(y) , We denote

the homotopy class of continuous f : Y -K by [f]. Schwartzman [ S] showed that

for each continuous f : Y - K there is a continuously differentiable g E [f] and

that WA(g) = 0 if the continuously differentiable function g is homotopic to a

constant. He used this to define the winding numbers homomorphism:

16. Definition. If {St I is a one-parameter flow on a compact metric space

with invariant probability µ, the winding numbers homomorphism with respect to µ,

Wµ : H1(Y, Z) - C, is defined unambiguously by Wµ([f]) = WA(g) where g C [f]

is continuously differentiable. The image of this homomorphism is called the

winding numbers group of the flow with respect to P.

Definitions 4 and 16 are related by:

17. Theorem. If (X, 12, m, T) is a finite state process then W(T) is the

winding numbers group of its suspension {Tt) with respect to m.

Proof. Each continuous f : X - K is, by 14, homotopic to a map of the form

exp 2 rriM(x) y with M : X - Z continuous. Such a map is differentiable with

respect to { Tt) everywhere except, perhaps, at (x, 0) . Nevertheless, it is not

difficult to show that

W ( [f]) = 1 f fl [exp 2rr iM(x) y]
dy dmµ 2 vi X 0 exp 27r iM(x) y

= fX J M(x)dydm= f Mdm.

Notice that continuous maps from X to Z are precisely integral linear combinations

of characteristic functions of cylinders so that the winding numbers group of I Tt )

is the group generated by the set I m(C) : C is a cylinder), which is by definition

W(T). G

The spaces X of finite state processes are zero-dimensional compact metric

spaces. When the process is ergodic and X (reduced) is infinite this means that X is
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homeomorphic to a Cantor set. Hence, for the interesting cases there is no direct

way of distinguishing between the spaces X. By suspending we obtain a canonical

homomorphism from the first cohomology group to the reals which may help in

distinguishing between processes from the point of view of block-isomorphism.

However:

18. Exercise. If T is a finite state process, show that T and T-1 have

the same winding numbers homomorphism. In particular, W(T-1) = W(T).

The above exercise implies that the winding numbers group is not a complete

invariant of block-isomorphism since, as we shall see in Chapter V, there are

topological Markov chains which are not "reversible" i.e. which are not topologically

conjugate to their inverses.

4. COMPUTATION OF THE FIRST COHOMOLOGY GROUP

Let (X, (2, m, T) be a finite state process. Denote by C(X, Z) the group

of continuous maps from X to Z and by B(X, Z) the subgroup of maps f o T - f,

f E C(X, Z). We have seen in the last section that the homomorphism

C(X, Z) /B(X, Z) f( )dm 1R

is an invariant of block-isomorphism. We now show that H1(X, Z) , by itself,

cannot be used for distinguishing between non-trivial Markov chains.

19. Theorem. If (X, m, T) is a Markov chain such that X is infinite

then H1(X, Z) = C(X, Z) /B(X, Z) is a free Abelian group with a countable infinity

of generators.

Proof. Let F denote the set of functions in C(X, Z) which are functions of

the "past" i.e. measurable with respect to " T-la where a is the state par-
i=0

tition. A function f E C(X, Z) depends on finitely many coordinates and since

f, f , T, f o T2, ... are all cohomologous we see that C(X, Z) /B(X, Z) F/OF

where Of.= f , T - f and AF= { Of : f E F). Write F= U F where
n=0 n

n
F C C(X, Z) is the set of functions measurable with respect to " T-1 a. As

n i=0
f E Fn implies Of E Fn+1, we have

62



1 1 1

FO ' F1 4-s F2
A A

where i is inclusion. Thus we have a directed sequence

F1/AF0 F2 /AF1F3/AF2 '...
where the homomorphisms j are given by j(f + AFn-1) = f + AFn, f E Fri Each

j is injective since, if f + AF
n-1

= AFn, f E Fn then f = g . T - g with g E Fn-1

by 2.42 i.e. f E AFn-l. It is easy to see that F/AF is the direct limit of the

above sequence, we now show that (F /AF ) /j(F /AF ) = F /F +AF
n+1 n n n-1 n+1 n n

is torsion free.

nSuppose f E Fn+1 is such that there is k E Z with kf E Fn + F

kf = g + h o T - h for some g, h E Fri Exponentiating we have

h0exp( -271 i g/k) = exp 2v i xp 2 7ri k

i. e.

and, by 2.42, exp 21r i k is a function of x0 , ... , xn1. Put
M(x0 > ... xn-1)hexp2rrik=exp2ni k M:X Z so that

h(x0, ..., xn) - M(x0 . ... , xn-1) = kN(x0, ..., xn) where N : X -+ Z. Hence,
kf = g + k(N o T - N) +M. T - M and k divides g + M o T -ME Fri It follows

that f = N o T - N + fn with N, fn E Fn, i. e. f E Fn + AF n, and that

Fn+l/Fn + AFn is torsion free. By a similar argument the groups Fn/AFn-1

are also torsion free.

We have seen that F/AF is the direct limit of a sequence of finitely generated

free Abelian groups whose successive quotients are torsion free. It follows that

F/AF is free Abelian with at most countably many generators. If we let 0n be

the number of allowable words x0 ... xn of length n + 1 then the rank of Fn/AFn-1

is On - On_1 + 1 since Ker A consists of constant functions. Clearly

On - en-1 + 1 - o, and F/AF is infinitely generated. //

20. Exercise. Let T be an ergodic translation of a compact metric Abelian

group X. Compute, in terms of the character group of X, H'(X, Z) where X

is the suspension space of X with respect to T.
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CHAPTER V: CLASSIFICATIONS OF TOPOLOGICAL MARKOV CHAINS

This chapter is concerned with various classifications of topological Markov

chains. We shall often be dealing simultaneously with several topological Markov

chains, and it is convenient to denote a topological Markov chain and its defining

matrix by the same symbol. For a topological Markov chain S, h(S) denotes its

topological entropy. It should be clear from Section 4 of Chapter II that h(S) = log Q

where f is the maximum eigenvalue of the defining matrix S.

1. FINITE EQUIVALENCE

1. Definition. Two topological Markov chains (X1, S1) and (X2, S2) are

said to be finitely equivalent if there is a topological Markov chain (Y, T) and

bounded-to-one continuous surjections ¢1 : Y - X1 , $2 : Y - X2 such that

01T=S101, 02 T=5202.

Finite equivalence may be pictured as

(Y, T)

(XI, S1) (X2, S2)

If (X1 , S1) and (X2, S2) are finitely equivalent then, by 4. 8, h(S1) = h(S2 )

and the matrices S1, S2 have the same maximum eigenvalue. We shall prove that

the converse is also true. That finite equivalence is an equivalence relation is an

immediate consequence of the converse.

We shall use amalgamation and division matrices to construct continuous semi-

conjugacies of topological Markov chains:

2. Definition [W']. A rectangular 0-1 matrix is called a division matrix if its

rows are non-trivial and each column contains exactly one non-zero entry. A 0-1

matrix is called an amalgamation matrix if its transpose is a division matrix.
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Throughout this section the symbols A, D with or without embellishments

will denote amalgamation and division matrices, respectively.

Note that the product of two division (resp. amalgamation) matrices is a

division (resp. amalgamation) matrix. A matrix which is both division and

amalgamation is a permutation matrix.

3. Proposition. Let (X, S) and (Z 1, W I) be topological Markov chains.

If their defining matrices satisfy Al S = WI Al for some amalgamation matrix A1,

then there exists a continuous surjection Q : Z1 -. X such that )W1 = S9.

Proof. Suppose S is k X k and WI is l X 1. We use the amalgamation

A 1 to define 0o : 11, . , , l ) - 11, k I and then to extend to W : Z 1- X.

Al is 1 X k and given xo E { 1, ... , Z) there exists a unique yo E { 1, ... , k )

such that A1(xo , yo) = 1, put 40 (xo) = yo. Note that, since S is 0-1 and Al an

amalgamation, AlS=WIAl is 0-1. If Wl(xo, x1) = 1 then

WI(xo, x1)A,(x1, Wox1) =1 so that

1=(W1A1)(xo, $0x1) =(A1S)(xo,Oox1) =A1(xo, coxo)S('oxo, Ooxl)

Thus, W1 (x0, x1) =1 implies S(q)oxo, )ox1) = 1 and the map O(x) _ {%(xi)

x = { xi) is well defined. It is clear that 0 is continuous and 'WW1 = SW. We

complete the proof by showing that 0 is surjective. If $o (xo) = yo and

S(Yo, y1) =1 then (W1A1)(xo, Yt) =AI(xo, Yo)S(Yo, Yl) =1 and we can

find x1 with WI (xo, x1) = 1, 0o (x1) = yl. Thus given y = (yi) we can, for

each n ? 0, find x(n) such that (Ox(n)) y
1
, for all i > -n. Now any limit

point x of x(n) has Ox = Y. //

Interchanging the roles of rows and columns in the above proof we obtain

4. Proposition. Let (Y, T) and (Z2, W2) be topological Markov chains.

If their defining matrices satisfy TD1 = D1 W2 for some division matrix DI, then

there exists a continuous surjection 4/: Z2 - Y such that iy W2 = Ty1.

In order to establish topological entropy as a complete invariant of finite

equivalence, we shall show that if S, T are topological Markov chains with

h(S) = h(T) then the hypotheses of 3 and 4 can be satisfied with (Z1, WI) = (Z2, W2) .

Given a non-negative integral k X k matrix M, we have a graph with k
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nodes and M(i, j) paths from i to j. Let Q be the totality of the (directed)

paths in the graph, in some fixed order. We may index with Q the columns of a

X IQ I division matrix D with D(i, q) = 1 iff q starts at i. Similarly we have

a IQI X k amalgamation matrix A with A(q, j) = 1 iff q terminates at j. Now

M = DA and it is not difficult to prove

5. Proposition [W']. If M is a non-trivial non-negative integral matrix then

it can be written as M = DA where D is a division matrix and A is an amalgama-

tion. This decomposition into the product of a division matrix with an amalgamation

matrix is essentially unique in the sense that if M = D'A' then D' = DP, A' = P 1A

for some permutation matrix P.

6. Example. If M = (0 ?) then the graph

q

(
gives the decomposition M =

1

0
1 0 0)
0 1 1

7. Lemma (Furstenberg) . Let S, T be irreducible non-negative integral

matrices. S, T have the same maximum eigenvalue iff there exists a strictly

positive integral matrix R with RS = TR.

Proof. Suppose RS = TR where R is strictly positive. Let 13 be the maxi-

mum eigenvalue of S and let w be a corresponding strictly positive eigenvector,

Sw =0 w. Then T(Rw) = 1(Rw) , Rw is a strictly positive vector and the Perron-

Frobenius theorem shows that A must be the maximum eigenvalue of T.

Conversely suppose uS = j3u and Tv = /3v where u, v are strictly positive

row and column vectors respectively. Then

T(vu) = /3 (vu) = (vu) S

but the strictly positive matrix vu is not in general integral. Nevertheless for

every 6 >0 there exists an integer n such that n(vu) = R + E where R is a
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strictly positive integral matrix and each entry of E has absolute value less than E.

Since T(nvu) = (nvu) S we obtain TR = RS by choosing C > 0 small enough. //

8. Lemma. If the non-negative non-trivial integral matrices R, S, T satisfy

RS = TR then there exist non-negative non-trivial integral matrices W, D, A such

that D is a division matrix, A is an amalgamation and the following diagram

commutes:

T

Proof. Use 5 to decompose R = DA, S = D1 A1, T = D2 A2 into products of

division matrices with amalgamation matrices and rewrite AD1 = D'A', A2 D = D"A"

to obtain the diagram:

Al Dl

A

All

D

A2 D2

Now DD'A'A1 and D2D"A"A are two decompositions of RS = TR. Replacing D",

All by D"P, P-1 A" where P is a suitable permutation, we may assume

DD' = D2D" and A'A1 = A"A. Defining W = D'A", the lemma is established.

9. Proposition. If S, T are irreducible non-negative integral matrices with

the same maximum eigenvalue b then there exist an irreducible non-negative integral

matrix Wl with maximum eigenvalue A and division and amalgamation matrices

D1 , Al such that the following diagram is commutative.
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S

Al

W1

DI D1

Proof. By 7 and 8 we have a commutative diagram where A is an amalgama-
S

A A

W

tion and D is a division. Without loss of generality we can write W = B1 Wz)
with W1 irreducible. Accordingly, write A = (A1) . Then from

z
0

(A1)S=(W 1

W
) (A we obtain Al S = W1A1. Choose a strictly positive vector v

z z A2

such that Sv = j3v. Then W1(A1v) = A1(Sv) = /3(A1v) . Since no row of the 0-1

matrix Al is trivial, A1v is strictly positive and we see that /3 is also the

maximum eigenvalue of W1. Now let w be a strictly positive row vector with

wW1 = /3w. Then (wA1) S = j3(wA1) and WA1 is a non-trivial non-negative vector.

As /3 is the maximum eigenvalue of S, wA1 must be strictly positive and it follows

that Al has no trivial columns. Recalling that each row of Al is also a row of the

amalgamation matrix A we conclude that Al is an amalgamation matrix.

Now write D = (D1 , D2) so that DW = TD implies D1 W1 + Dz B = TD1. We

know that T and W1 have the same maximum eigenvalue, /3. If u is a strictly
positive vector such that uT = 9u, then (uD1) W1 + u(D2 B) _ /3(uD1). Hence

(uD1) W1 :5/3(uD1) and, to avoid contradicting the Perron-Frobenius theorem,

equality must hold i. e. u(D2 B) must be zero. It follows that B = 0 and

D1 W1 = TD1. We may now apply our previous reasoning to conclude that D1 is a

division matrix. //

10. Theorem [ P5]. Two topological Markov chains are finitely equivalent

iff they have the same topological entropy.

Proof. We have already remarked that 4. 8 implies that topological entropy

is an invariant of finite equivalence of topological Markov chains. For the converse,
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suppose the topological Markov chains S, T have the same topological entropy. This

is equivalent to supposing that the defining 0-1 matrices S, T have the same maxi-

mum eigenvalue. From 9 we obtain an irreducible non-negative matrix W1 (with

the same maximum eigenvalue as S, T) and amalgamation and division matrices

A1, D1 such that A1S = W1 A1, TD, = D1W1. Since Al is an amalgamation and

S is 0-1, the matrices A1S = W1 AI and W1 must be 0-1. Applying 3 and 4 we

find continuous surjections 0, 11 such that ')W1 = SO, 4/Wi = TI/. Since W1 has

the same topological entropy as S, T, 4. 8 shows that 'Y, l/ must be bounded-to-

one, and the proof is complete. //

2. ALMOST TOPOLOGICAL CONJUGACY AND THE ROAD PROBLEM

11. Definition. Let (X, S) be a topological Markov chain. A Borel set

N C X is said to be universally null if it is a null set with respect to every ergodic

(Borel) measure with support X. Two topological Markov chains (X1 , Si) and

(X2, S2) are said to be almost topologically conjugate if there exists a finite

equivalence

(Y, T)

(X1, Si) (X2, S2)

with invariant universally null sets N. C X. such that the restrictions
1 1

0
1 1

J Y - q, ,1 1(N
1

) are injective (i = 1, 2).

The problem of classifying topological Markov chains with respect to almost

topological conjugacy arose in the work of Adler and Weiss on automorphisms of the

two-dimensional torus [A. W. ]. The specific topological Markov chains arising in

this connection were classified in [A. W. ] but the general problem, of independent

interest, remained open. Adler, Goodwyn and Weiss [A. G. W. ] later achieved a

solution for a subclass. They proved that for aperiodic matrices with integral

maximum eigenvalue, their associated topological Markov chains are classified by

this eigenvalue. The general problem was solved by Adler and Marcus [A.M.]. We

simply state this solution and refer the reader to [A. M. ] for the (rather intricate)

proof.
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12. Theorem [A. M. I. Two topological Markov chains are almost topologically

conjugate iff they have the same period and the same topological entropy.

In [A. W. I another problem came up as the result of an attempt to solve the

almost topological conjugacy problem for aperiodic 0-1 (defining) matrices with

integral maximum eigenvalues ( see also [A. G. W. I and [ MI) . This problem, called

the road problem, is still unsolved. We describe the road problem and its relevance

to almost topological conjugacy.

Let n > 2 be an integer and let T be a k X k aperiodic 0-1 matrix with all

its rows sums equal to n. The matrix T gives a graph with k "cities" and n

"roads" exiting from each city. Choose a city as the "capital". The road problem

for T consists of using a1, ... , an to label the roads leaving each city in such a

way that there exists a finite word made up of symbols from the set { a1, ...' a }
n

with the property that, no matter which city you are in, following the entire word

will bring you to the capital. Note that, by irreducibility, the solvability of the

problem does not depend on the choice of capital.

13. Example. Let

0 1 1 0 0
0 0 1 1 0

T= 0 0 0 1 1

1 0 0 0 1

1 1 0 0 0 and let 1 be the capital city.

We label the roads in the graph obtained from T as follows

3

The word a1 a2 a2 sends 1, 2, 5 to 1 and 3, 4 to 3 and the word a2 a2 a1 sends 1, 3

to 2 so that a1 a2 a2 a2 a2 a1 a2 a2 sends all cities to 1.
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14. Exercise. Show that the road problem is solvable whenever T has non-

zero trace.

It is not known if the road problem is solvable for all aperiodic 0-1 matrices

with row sums equal to n.

The full n-shift is the topological Markov chain defined by the n X n matrix of

ones. The connection between the road problem and almost topological conjugacy is

that if the road problem is solvable for an aperiodic 0-1 matrix T with row sums

equal to n, then the solution gives an almost topological conjugacy between the full

n-shift and the topological Markov chain T:

Let (Y, T) be the topological Markov chain given by T and let (X, S) be

the full n-shift, with X = II {a1, .. , a }. We simply define a map ¢ : Y - X
-00 n

which satisfies all the requirements for an almost topological conjugacy

(Y, T)

identity

(Y, T) (X, S)

If T(yo, y,) = 1, define % (yo, yi) E { al , ..., an } according to the label of the

road from yo to yi. For y = (yi) E Y define 44(y) i = 0o (Yi, yi+1) . 0 amounts
to writing a given doubly infinite sequence of transitions between cities as a sequence

of road labels. Evidently (pT = SQL and W is continuous. Note that for y= (y
i
) E Y

and any integer m, ym and ¢(y) i, i > m, determine all yi, i ? m. All the required
properties of 0 follow from this observation, as outlined in the exercise below.

15. Exercise. (i) Use an argument similar to the one in the proof of 3 to

show that 0 is surjective.

14-1(a) I < k is valid.

G ii) Let a= (ak. iEZ Show t h a t if (ak iE N contains the code word
1 -1

solving the road problem infinitely often then I $- (a) I = 1.

(iv) Check that the set

{a = (ak. E X : the code word appears only a finite number of times in (a
k

)iEIIV }-l1

is universally null.

(ii) Suppose T is k X k. Show that for any a = (ak. iEZ the inequality
1
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3. TOPOLOGICAL CONJUGACY OF TOPOLOGICAL MARKOV CHAINS

In this section we consider topological conjugacy of topological Markov chains

and seek necessary and sufficient algebraic conditions on defining matrices.

Recall that two topological Markov chains are topologically conjugate if

between them there is a homeomorphism which conjugates the shifts. If we

specify the characteristic properties of state partitions which are preserved under

topological conjugacy then the problem can be stated as that of determining, for a

given topological Markov chain, all partitions with these properties.

16. Definition. Let (X, S) be a topological Markov chain. A partition Cl

of X is called a Markov partition or a Markov generator if it enjoys the following

three properties:

(i) a is a finite partition of X into closed-open sets,

(ii) Q is a topological generator in the sense that for any sequence of sets

Ak E a, i E Z, the intersection fl S-lAk contains at most one point,
1 - o0 1

oo

(iii) if
Akl

E a satisfy Akl n S-IAki+1 *0 for all i E Z then

fl SiA *0
-ao ki

In the above definition, (ii) and (iii) imply that a determines all points of X.

Evidently, the state partition of a topological Markov chain is a Markov partition.

17. Definition. Two non-negative integral matrices S, T are said to be

strong shift equivalent (in 1 steps) if there exist non-negative integral matrices

U1, ..., UI and VI, ..., VI such that

S=U1V1, V1U1 =U2V2, .... VI-1U1-1=U1VI, V
I UI =T.

We shall establish Williams's result that topological Markov chains S, T are

topologically conjugate if their defining matrices S, T are strong shift equivalent.

For this we need to fix ways of obtaining 0-1 matrices from finite partitions.

Fix a topological Markov chain S. If = (El, E2, ..., Ek) and

77= (F1 , .. , F1) are two (finite) ordered partitions the k x I zero-one matrix

( , 77) is defined by

- {1 when EiflFj*0
0 otherwise.
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The k x 1 zero-one matrix ( , 77) S is defined by

S' j) =
tl when 3
0 otherwise

1 FJ #
( 77) (i

Put M(0=(4' )S'

18. Lemma [ P. W']. If 77 v S-1 4 and if 4 is Markov, then 7) is

Markov and

(i) M( 77)(77, S,

(ii) M(77) =(i7, )S(k, 11)

Proof. Since is Markov, " S-1 k is Markov. It follows easily from
7 7 4 5 1 4 that 71 is also Markov.

Let Ell I E. E 4 and let F E 77. Observe that, as k < 77, p fl E.1 # 0 iff
11

12

F C E. . Similarly, E. fl
S-1 E. n F # 0 iff E. n

S-1 1E.
C F.

11 11 12 2 11 12

For(i), fix (i1, i2) E 11, ..., k} [( 77)(73, )S](i1, i2) is the number

of F E 71 which intersect both E. and S-1 E. . If E. fl S-1 E. i.e. if
IL 12 11

M(k) (i1, i2) = 0, then 1(k, 77) (17, ) S](i1, i2) = 0 since all F2E 77 with

F fl E. # 0 are contained in E. . If E. f1 S-1 E. # 0, then there exists a unique
11 11 11 12

F E 77 with E. fl S
1 E. C F. Noting that F' f1 E. # 0, F' n S-1

E. # 0 imply
11 12 11 12

F' C E. ,
S-1 E, n E. fl F' = S 1 E, n F' # 0 and E. n S 1 E. C F', we conclude

11 12 11 12 11 12

that 77)(17, 4) S101, i2) =1 whenever M(4) (it, i2) =1.

For (ii), fix ( j 1 , j2) E { 1 , . , 1 1
2

and let ( i 1 , i2) E {1, .. ,
k}2 be

such that F. C E. , F. C E. . Then [(?I, 4)S ( r) 1(j,, j2) is 0 or 1 accor-
31 11 32 12

ding as F. n
S-1 E, is empty or not. Hence, the right hand side is 0 iff

_1 Jf 12 -1
F fl S E. _ 0 which implies that F. fl S F. _ 0 and this happens iff

31 12 J1 32

M(77) (j1, j2) = 0 Suppose F. fl
S-1 E. # 0. Then E. f1

S-1 E. # 0. Writing
31 12 11 12

F. = U(E. n S-1 E) we see that
J1 E 11

F. f1S-1F. =U (E. f1S-1EflS 1F.) = E. f1S-1E. f1S-1F. = E. fl S 1F.
it J2 E 11 J2 11 12 J2 11 12

Take any non-empty E
12

n S 1 E1,3 C F J.2. We have

E. n
s-1

Ei2 n
s-2 E.

C Eil n
s-1

Fj2 =
Fj1

n S-1 Fj2

where E
1
.1 n s-1 E

i2
n s-2 E

13
is non-empty by the Markov property. Hence

F.
n

S-IF
jz

# 0 and M(1]) (j1, j2) = 1. //
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Let a be a Markov generator for the topological Markov chain (X, S). It is
r

easy to see that the partitions ar = " S la, r ? 0, are also Markov generators.
i=0

A topological generator a determines the topology of X, in the following way: the
k2

sets of the partitions " S-la, k1, k2 E Z, k1 < k2 (the 0-cylinders) form a
i=k1

base for the topology of X. Moreover, the closed-open sets of X are precisely

those that can be expressed as finite unions of a-cylinders. It follows that if b is
another Markov generator then we can find p E IN such that `p S lo,

n 1=-AP nC, < " S-f . Putting V = S-PID, n = 2p we have Y " S-1 a, a < " Sy.
i=-p i=0 i=0n

Using Y < " S-la we obtain
i=0

( a2n) 1 > a2n ,
'Y

n+1 : In

(a2n , yn+1)1 a2n n+2 a2n " yn+1

( ,2n , y2n-1) 1 a2n Y2n a2n , y2n-1

Now applying 18 to this sequence of relationships we see that (all partitions involved

are Markov and)

M(a2) =UiV1, V1U1
2n n+1 ..., VnUn=M(a2n"Yn),

for suitable 0-1 matrices U1, ..., U , V1, ... , V V. In other words, M( 02n,
and

2n 2
n n )

M(a ") are strong shift equivalent in n steps. Interchanging the roles of
n

a and y, and of the shift S and its inverse, and using a ," Sly, we see that
1=0

M(2" S'y) = M(Y-2n) = M(y2n) and M( "n Sly " "n Sla) = M(Y2n " a2n, are
1=0 i=0 i=0

strong shift equivalent in n steps. Hence M( a2n) and M(($2n) = M(y2n) are
strong shift equivalent in 2n steps:

19. Proposition. If a, (s are two Markov partitions for a topological Marlwv

chain then there exists n E IN such that the matrices M( a2 1 and M(t1) are
strong shift equivalent in 2n steps.

20. Theorem ([W'], [P. W11). Two topological Markov chains S, T are

topologically conjugate iff their defining matrices S, T are strong shift equivalent.
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Proof. Suppose S, T are topologically conjugate by 0, Q'S = Ty). Let a, at
be the state partitions of S, T respectively and put I = t W. a, f are Markov
partitions for S and we obtain from 19 a positive integer n such that M( a2n) and

M( n) are strong shift equivalent. It is not hard to see that M( a2n) is strong

shift equivalent to M( a) and M((3) to M(b) = M( a') . Therefore S = M( a)

and T = M( a') are strong shift equivalent.

For the converse it is sufficient, by the transitivity of topological conjugacy,

to prove that if the non-negative matrices S', T', U, V satisfy S' = UV, VU = T'

and S', T' are irreducible then the topological Markov chains S', T' are topo-

logically conjugate. We do not assume that S', T' are 0-1 since in a strong shift

equivalence between 0-1 matrices S, T there is no guarantee that the intermediate

matrices are 0-1. Consider the graphs associated with S' and T'. U may be

regarded as determining paths from S'-vertices to T'-vertices and V as deter-

mining paths from T'-vertices to S'-vertices. Since S'(io , ii) _IU(i0 , j) V (j, it) ,
j

for each pair of S'-vertices (io , it) the (U, V) -paths leading from i0 to it are

in bijective correspondence with S'-paths from io to it. Fix a bijection for each

pair (i0 , it) . Similarly for each pair of T'-vertices (jo , j i) the (V, U) -paths

leading from j0 to jt are in bijective correspondence with T'-paths from jo to

j1. Fix a bijection for each pair (jo , j I) also. Now, given a doubly infinite

sequence of S'-paths (sn) nE Z we obtain a sequence of (U, V) -paths

... (u-tv-t)(u0v0)(uivi)(u2v2) ...

where unvn corresponds to sri Re-bracketing we get

... (v_tuo)(v0ut)(viu2) ...

which determines a doubly infinite sequence of T '-paths (tn)
nE 2f

in which to

corresponds to vnun+i' It is not hard to check that the map thus obtained is indeed

a topological conjugacy between the topological Markov chains S' and T'. //

21. Remark. The relationship between Markov generators and topological

conjugacy of topological Markov chains should perhaps be made more explicit. Fix

a topological Markov chain S. If the topological Markov chain T is topologically

conjugate to S, then the pull back of the state partition of T is a Markov partition

of S. Now suppose A is a Markov partition of S. It is well known, and easy to
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check, that the topological Markov chain S (defined by an irreducible matrix) is

topologically transitive i. e. given open sets 0 , 0 ' it is possible to find n E N

such that 0 n 5n0' # 0. It follows that the matrix M(I) is irreducible. It is

easy to produce a topological conjugacy between the topological Markov chains S

and M((s) such that the pull back of the state partition of M(h) is P.
Strong shift equivalence has the disadvantage that it is difficult to check. In

trying to replace it by a more manageable condition Williams defined shift equiva-

lence.

22. Definition. Two non-negative integral matrices S, T are said to be

shift equivalent if there exist non-negative integral matrices U, V and l E N

such that

1 I
SU=UT, VS=TV, UV=S and VU=T

1 is called the l of the shift equivalence.

23. Proposition [ W']. Shift equivalence of non-negative integral matrices

is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Suppose non-negative integral

matrices R, S, T, U1, VI I
U2, V2 and m, n E N satisfy

RU1 = U1S, V1R = SV1, UIV1 = Rm, V1U1 = Sm ,

SU2 = U2 T, V2 S = TV2, U2V2 = Sn, V2 U2 = Tn.

Take U = U1 U2, V = V2 V1. Then

RU=UT, VR=TV, UV=Rm+n VU=Tm+n

and transitivity is verified. //

24. Proposition. If two non-negative integral matrices S, T are strong

shift equivalent in 1 steps then they are shift equivalent with lag I .

Proof. Given a strong shift equivalence

S=U1V1, V1U1 =U2V2, ..., V1 1U1-1=U1V1, V I U I =T
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we put U = Ut U2 ... UZ , V=V 1 V1 -1 ... VI to obtain a shift equivalence

Z LSU=UT, VS=TV, UV=S , VU=T . //

25. Corollary. If two topological Markov chains S, T are topologically

conjugate then their defining matrices S, T are shift equivalent.

Is the converse of 25 valid i. e. does shift equivalence imply topological con-

jugacy? The answer to this (Williams's problem) is unknown. There is, however,

another equivalent formulation of topological conjugacy called adapted shift equiva-

lence, and perhaps some hope that shift equivalence may imply adapted shift

equivalence:

If S is a k X k 0-1 matrix, we shall denote by S
n
, n ? 0, the 0-1 transition

matrix for allowable S-words of length n + 1: the rows and columns of S
n

are
indexed by the set

{( io , l1 .... , n) E 11,.. . , k
}n+1 : S(iO

, it) = S(it , i2) =... =S(in_l, in) = 1 }

and Sn(io , it, .... in, Jo, it - - - Jn) = 1 iff Jo = it , Jt = i2 , ... , Jn-1 = in and
S(i n, jn) = 1. By definition, SO = S. It is easy to see that when S is irreducible

and a is the state partition of the topological Markov chain defined by S we have

M( an) = Sri

26. Definition. Two 0-1 matrices S, T are said to be adapted (or adapted

shift equivalent) if there exists n E IN such that Sn and Tn are shift equivalent
with lag n.

27. Theorem [P. 8]. Two topological Markov chains S, T are topologically

conjugate iff S, T are adapted shift equivalent.

Proof. All the work for the proof in one direction has been done. Let G, a'
be the state partitions of S, T respectively. If S and T are topologically con-

jugate then 19 and 24 show that, for some n, M( a2n) = S2n and M(01 n) =T
2n

are shift equivalent with lag 2n. In proving the converse we shall assume for con-

venience of presentation that the lag is 2: We assume

S2 U = UT2, VS2 = T2 V, UV = S2', VU = T22
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for some non-negative integral matrices U, V.

Consider the graphs associated with S2 and T2. U then specifies transitions

from S2 -vertices to T2 -vertices and V specifies transitions from T2 -vertices to

S2 -vertices. Arrows will indicate allowable transitions. S2 -vertices are triples,

so that we have, for example

(x0 , x1, x2)

(YO', Y1', Y2')

V

(x1, x2, x3) (x2, x3, X4) (x3, x4, x5)

The question arises as to whether there is a transition from (yo', Y1', Y2') to

(yl , Y2 , y3) . By commutativity, there must exist yo such that

(x0, x1, x2)

I
(Y0, Y1, Y2) (Y1, Y2, Y3)

and therefore x such that

(x, x3, x4) (x3, x4, x5)

(YO, Y1 , Y2)--_(Yl , Y2,

However x must necessarily be x2 to comply with the commutativity

(x0, x1, X2)-(XI, x2, x3)-a(x2, x3, x4)

(Yo, Yl, Y2)

Thus there are two paths from (x0, x1, x2) to (X2, X3, x4) passing through the

T2 -vertices (yo', Y1', y2') and (yo, y1, y2) which correspond to a unique

path of length 2 (X0, x1, x2) - (X2, X3, x4) . We conclude that

(Yo', Y1', Y2') (yo, Y1, y2) and that the transition

(Yo', Yi', Y2') n (YO, Y1, Y2) ' (Y1, Y2, Y3) is allowed.

S2
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For x = (xn) define ¢o (xo , x1, x2, x3, x4) = (YO, Y1, Y2) where the

transitions

(xo, x1, x2)---.(xi, x2, x3) (x2, x3, x4)

(Yo, Yt, Y2)

are allowed. By the argument above,

( ON n' $(x) n+l' ON n+2) = IN (xn' xn+l' xn+2' xn+3' xn+4)

then defines a continuous map $ such that OS = TO.

In a similar way we can define, for y = (yn), I/o(Yo, Yi, Y2' Y3, Y4) _

(X2, X3, x4) where the transitions

(x2, x3, x4)

1
(Yo, Yi, Y2)-~(Yi, Y2, Y3) `(y2' Y3' Y4)

are allowed and, by (P (Y) n' (Y) n+i' 41 (Y) n+2) = '° (yn' Yn+l' Yn+2' Yn+3' Yn+4)
a continuous map P with PT = $P. It is clear that

/4=52, O =T2.

Hence, ' and are bijective, and are homeomorphisms. Thus S, T are topo-

logically conjugate. //

4. INVARIANTS AND REVERSIBILITY

Having discussed algebraic formulations of topological conjugacy of topological

Markov chains, we devote this section to invariants. As we shall see, none of our

invariants clarifies Williams's problem - all computable invariants known to date

(in particular topological entropy) are invariants of shift equivalence.

We start the section with an example of an irreversible topological Markov

chain (one which is not topologically conjugate to its inverse). It will follow from

this example that many invariants are not complete, since many invariants cannot

distinguish between inverses. The example is due to Kollmer. The proof presented
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here was prepared with the help of Les Davison. Cuntz and Krieger [C'. K'.1] have

since constructed many more examples.

Recall that the inverse of a topological Markov chain S is the topological

Markov chain defined by the transpose matrix S . We shall show that S = (19 5

and S* 19 4=
( 5 1)

are not shift equivalent. In view of the results of last section

and the exercise below, this is sufficient to conclude that the topological Markov

chain S is not topologically conjugate to its inverse.

28. Exercise. Let S be a non-negative irreducible matrix. Let Si be the
0-1 transition matrix for paths in the graph obtained from S. Show that S and Sl

are (strong) shift equivalent with lag 1.

29. Lemma. There are no non-negative integers x, y satisfying

x2-101y2=f20, x-9y=0(mod 4), x+9y=0(mod 5).

Proof. Consider the quadratic field Q(1101). We shall use some standard

terminology from algebraic number theory. In Q(.1101) the integers take the form

Z +
2

V 101 where m, n are rational integers of the same parity. On the integers

Z('101) of Q(V101) the norm N is defined by N(a +b'101) = a2 - 101b2 .

N then satisfies N((a+bV101) (c+d-%/101)) = N (a+b' 101) N(c+dv'101). 10 + 101 is
a unit of Z(I1O1).

Suppose the non-negative rational integers x, y satisfy N(x+y./ 101) = ±20,

x - 9y = 0 (mod 4), x + 9y = 0 (mod 5). Choose n 0 so that

(0+V01)nx+I101y<

i. e. 1 x0 + V101 y0 < 10 + y1101

where x0 + ,/ 101 yo = (x + 101 y) (-10 + v101) n and x0 , y0

Since

are rational integers.

±20 = N(x + V101 y) (N(10+V101))nN(xo +/101yo)

=(-1)nN(xo +V101yo)

we have x02 - lOly 2 = t 20, or 101 yo = ± '(xo 2 ± 20). Thus 1 s x0 ± J(x0 2±20) <

10 + V 101. The possibilities are easily exhausted, we must have x0 = ±9, yo = 1.

Hence

4 1
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x+J101y=(10+V101)n(±9+N/1O1).

Putting xr+1 + ,/101 yr+1 = (10 + ./101) (xr + -I101 yr)

=(lox r+lOlyr) + /101(xr+l0yr)

we have x = xn, y = yn with (xo, yo) _ (±9, 1). Moreover

xr+l = loxr + lOlyr ,

yr+1 = xr + l0yr .

Now xr+l - 9yr+1 = xr + l lyr = xr - 9yr (mod 20) so that if (xo , yo) = (-9, 1) then

x - 9y = -18 (mod 20) , which contradicts x - 9y = 0 (mod 4). On the other hand

xr+1 + 9yr+1 = 19xr + 191yr = 4xr + 36yr= 4(xr + 9yr) (mod 5)

so that if (xo , yo) _ (9, 1) then x + 9y = 4n. 3 (mod 5), contradicting x + 9y = 0

(mod 5). Therefore no non-negative integers satisfy x2 - 1Oly2 = ±20, x - 9y ° 0

(mod4), x+ 9y=_0 (mod 5). //

9 530. Proposition. The matrix S = (19 1) is not shift equivalent to its trans-

pose. Hence, the topological Markov chain defined by S is not topologically con-

jugate to its inverse.

Proof. Suppose S is shift equivalent to its transpose S . Then there exist

non-negative integral matrices U, V and k E IT such that VU = Sk and US = S U.

Since det S = -1, this means det U = ±1. From U( 19 5) = (19 4) U we see that U
a b

4 1 5 1

must have the form U = (b c) where 5a - 18b = 4c. Thus 5a - 18b = 0 (mod 4).

As det U = ±1 we also have 5a2 - l8ab - 4b2 = ±4 i. e. (5a - 9b)' - 101b2 = ±20.

Now taking x = 5a - 9b = 4c + 9b and y = b we obtain xz - 101y2 = ±20,

x - 9y = 0 (mod 4) , x + 9y a 0 (mod 5) for the non-negative integers x, y. Accor-

ding to 29 this is impossible. //

According to 4. 8 topological entropy is invariant under bounded-to-one con-

tinuous conjugacies of topological Markov chains. Thus topological entropy is an

invariant of topological conjugacy, but is far from complete.

Topological entropy and uniqueness of maximal measures, 2.26, enable us to

use maximal measures as invariants of topological conjugacy: if the topological
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Markov chains (X, S), (Y, T) are topologically conjugate by $ : X- Y and if mS

and mT denote their maximal measures, then mT = mS G 1

Hence the Markov

chains (X, S, mS) and (Y, T, mT) are block isomorphic and the winding numbers

group and homomorphism of Chapter IV can be used as invariants. 30 implies that

these invariants are not complete since, by 4.18, the same invariants are attached

t o S and S 1.

31. Exercise. Show that topological entropy and the winding numbers homo-

morphism are invariants of shift equivalence.

32. Exercise. Let S be the topological Markov chain defined by (1 1) .

1 0
Calculate its topological entropy and its maximal measure and the winding numbers

group associated with this measure.

For each n > 1, the number of points of period n is clearly invariant under

topological conjugacy i. e. the sequence of numbers {0 S(n) 1, 0 S(n) =

card { x : Snx = x) is an invariant. The 0S(n) can be incorporated in a function:

by

33. Definition. The zeta function of a topological Markov chain S is defined

oo

S(t) = exp(1 0 S(n) to/n)
n=1

for ItI < r, where r is the radius of convergence of the power series.

34. Theorem [B. L. ]. Let S be an irreducible non-negative integral matrix

with maximum eigenvalue [s. Then the zeta function of the topological Markov chain

S is

S(t) =1/det(I-tS), Itj<

Proof. Note that 0S(n) =trace(?). We have
00 00

Z 0 S(n) to/n = Z to (trace Sll) /n
n=1 n=1

°° (tX1)n+... +(tX k)n

n=1
n

where A1, ..., Ak are the eigenvalues of S. Thus for Itl <
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0o k
Z 0 S(n) tn/. = - Z log(1 - tXj)

n=1 j=1
k

= -log II (1 - tA.) _ -log det(I - tS)
j=1

and CS(t) = 1/det(I - tS) . //

35. Corollary. If S, T are topologically conjugate topological Markov

chains then det(I - tS) = det(I - tT) for all t E IR.

36. Exercise. Let S, T be irreducible non-negative integral matrices which

are shift equivalent with lag 1 . Show that trace Sn = trace Tn for all n ? l and

use 34 to deduce that det(I - tS) = det(I - tT) for all t E IR.

In effect, the characteristic polynomial of the matrix is the invariant, if we

ignore multiples by a power of the indeterminate:

37. Corollary. If the irreducible non-negative integral matrices S, T are

shift equivalent then their characteristic polynomials X S, X T satisfy

XS(t) = t% T(t) for some integer n. In particular X S(1) = X T(1) .

For instance, the matrices (2) and which are (strong) shift equiva-

lent, have characteristic polynomials t - 2 and t(t - 2).

Again, 30 implies that the zeta function is not a complete invariant.

5. FLOW EQUIVALENCE

38. Definition. Let (X, S) be a topological Markov chain and let k be a

strictly positive continuous function on X. Denote by Xk the compact metric

space obtained from { (x, y) : x E X, 0 <_ y k(x) } by identifying (x, k(x)) and

(Sx, 0) for each x. Let { St : t E IR } be the flow on Xk obtained by moving

each (x, y) vertically at unit velocity until (x, k(x))) - (Sx, 0) is reached where-

upon the flow resumes vertically from (Sx, 0). (Xk, S) is called the k-suspen-
sion of (X, S) . When k n 1, (XI, S t) is called the standard suspension, or simply

the suspension, of (X, S).

In 38 the region under the function k(x) is a fundamental region for an equi-

valence relation on X X IR: For positive integers n define

k(x, n) = k(x) + k(Sx) + ... + k(Sn-ix) and take k(x, 0) = 0. Then
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k(x, m + n) = k(x, n) + k(Snx, m) (*)

Define k(x, -n) = -k(S nx, n) so that (*) holds for all integers m, n. For

(x1, Yi) , (x2, Y2) E X X 1R put (x1, YO - (x2, Y2) iff x2 = Snxl and

yi - y2 = k(xl, n) for some integer n. That - is an equivalence relation follows

from the definition of k(x, n) and (*) . It is now easy to see that the region under

k is a fundamental region for - so that St may be regarded as the flow induced

on X x iR/- by the vertical flow (x, y) 1-. (x, y + t) on X X E.

Flow equivalence of topological Markov chains will be defined in terms of

standard suspensions. (Compare 38 with 4.12. )

Recall that two flows {St } and
I Tt }

are said to be topologically conjugate if

there exists a homeomorphism 0 such that ¢St = Tt0 for all t E E.

39. Proposition. Let (X, S) be a topological Markov chain. If k, h : X - ]R

are positive functions which are cohomologous (i. e. k = h + g o S - g for some

continuous g) then {St } and ISh } are topologically conjugate flows.

Proof. Associated with k, h we have equivalence relations _k --h on

X X E. Consider the homeomorphism ¢ of X X M defined by (x, y) I- (x, y+g(x)).

0 respects the equivalence relations -k -h, for if x2 = Snx1 and yl - y2 = k(xl, n)

then yt +g(x1)-y2 -g(x2) =k(xi, n) +g(xt)-g(Snx2) =h(xi, n). Hence, 4

induces a homeomorphism of X X 1R/ onto X X 1R/- It is easy to check that

this homeomorphism conjugates the flows { St J and Is t

If (X, S) is a topological Markov chain with state partition a, we shall say

that a function h : X - 1R depends only on a finite number of past coordinates if h
n

is measurable with respect to " S-lc for some n E N.
i=0

40. Theorem [P. 41. Let (X, S) be a topological Markov chain and let k be

a positive continuous function. Suppose ISt J has a continuous eigenfunction f with

eigenfrequency a 0 (i.e. f St = e22riatf for all t E E). Then k is co-

homologous to

(i) a continuous function which depends only on a finite number of past

coordinates and which assumes only integral multiples of a i for values,

(ii) a positive continuous function which depends only on a finite number of

past coordinates and which assumes only integral multiples of (na)- I for values,

where n is a fixed positive integer.
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Proof. The topologically transitive homeomorphism S has a dense orbit

ISnxu : n E Z }. Now the orbit ISt (xo , 0) : t EJR } is dense in Xk and, since

f Skt = If f is constant on this dense orbit. Hence f is constant, and we

may assume If 1 = 1. Now by 4. 14 f is homotopic to a function of the form

(x,y)E'exp2rik y (0 - y - k(x))

where M : X - Z is continuous. f(x, y) exp(-2ri y) is thus homotopic to 1

and we may write f(x, y) = exp 2ri(M x y + 1 (x, y)) for some continuous function
k 1 f' k(x)

Z ; X -0- JR. Since 2ri f = a, where f' denotes the derivative of f o St with res-
pect to t at 0, we see that

+ Z' (x, y) =a

where the derivative I , is with respect to the second variable.

Z(x, y) = (a -2)y+ 9(x) for some continuous 9 : X- M.

Z (x, k(x)) =1(Sx, 0) we conclude that

k(x) =M(X) +9(Sx)-0
a a a

Hence

Since

The integer valued function M on the compact space X can assume only a finite

number of values, and for each of these values n, M-1(n) is a closed-open set.

Hence each M-1(n) is a finite union of cylinders and M is measurable with respect
p

to " S'Ct for some p E IN, where a is the state partition. Put N = M o Sp.
i=-p

The function

a
is cohomologous to k and satisfies all the requirements of (i). For

(ii) , write N(x) = ak(x) + 01(Sx) - 91 (x) where 91 : X -+ JR is continuous.

Since also a > 0 and k is continuous and strictly positive we have for some positive

integer n,

N(x, n) = ak(x, n) + 91(Snx) - 01(x) > 0 for all x E X.

However, k(x, n) is cohomologous to nk(x) and 01(Snx) - 91(x) is a coboundary.

Consequently N(x, n) is cohomologous to nak(x) i.e.

k(x) = (N(x, n)) + 92(Sx) - 92(x)

for some continuous function 9 2, and N(X, n) = N(X) + N(Sx) + ... + N( Sn-1 x)

satisfies the requirements of (ii) . //
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41. Definition. If Ist 1, ITt ) are flows on the compact spaces X, Y

respectively, then ISt
} , ITt

} are said to be flow equivalent if there exists a

homeomorphism $ : X-e Y which sends orbits of S t to orbits of Tt, preserving

orientation but not necessarily parametrisation. Two topological Markov chains

S, T are said to be flow equivalent if their standard suspensions are flow equivalent.

The following proposition is easy to prove:

42. Proposition. In order that two topological Markov chains (X, S) and

(Y, T) be flow equivalent it is necessary and sufficient that there is a strictly

positive continuous function h : X - IR such that { St) and I T t } are topologi-

cally conjugate.

43. Theorem [P. 41. If S, T are flow equivalent topological Markov chains

then for some positive continuous rational valued function k depending only on a

finite number of past coordinates { S
kt } and IT t } are topologically conjugate

flows.

Proof. By 42, there is a positive continuous function h such that { St } and

{ T t } are topologically conjugate. Since IT t } has an eigenfunction with eigen-

frequency 1, the same is true of {St I. Now 40 provides a positive continuous

rational valued function k which depends only on a finite number of past coordinates

and which is cohomologous to h. Finally 39 shows that {st I and Is
t

} are
topologically conjugate.

Suppose S, T are flow equivalent topological Markov chains. By replacing

S by a suitable one of the strong shift equivalent matrices S
n

(n E N) defined in

Section 3, we assume that the function k in 43 depends on only one coordinate i. e.

k(x) = k(xo) for x = (xn) . Let N be a (positive) common denominator of the

rational values of k. Thus, if S is 1 X l , for each i E {1, ... , l } we can

write k(i) = Ni with n(i) E Z, n(i) > 0. W use the n(i) to define a new

irreducible 0-1 transition matrix S' : S' has n (i) vertices divided into I groups
f=1

with n(i) vertices in group i. In group i each vertex (except the top) leads only

to the vertex above it. The top vertex leads to the bottom vertex of group j iff

S(i, j) = 1. From T we obtain an irreducible 0-1 transition matrix T': If T is

m X m then T' has Nm vertices divided into m groups of N vertices. The top
vertex in group i leads to the bottom vertex of group j whenever T(i, j) = 1. All
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other vertices lead only to the vertex above them.

Consider now the homeomorphism kIN' Clearly, kIN can be regarded as the

direct product of the topological Markov chain S' with the identity on the interval

[0, N]. Similarly T1 can be regarded as the direct product of the topological

Markov chain T'
wi1IN

th the identity on [0, N]. Moreover, by 43, Ti/N and Sl/N
are topologically conjugate. It follows that S', T' are topologically conjugate topo-

logical Markov chains. Combining this with 20 we arrive at

44. Theorem [ P. S']. Two topological Markov chains S, T are flow equiva-

lent iff it is possible to get from the matrix S to the matrix T by a finite sequence

of the following operations on non-negative integral (square) matrices:

(i) Replace a (product) matrix UV by VU, where U, V are rectangular

non-negative integral matrices.

(ii) Replace M = M(1, 1) ... M(1, n) by

M(n 1) ... M(n, n),

M' = 0 M(1, 1) ... M(1, n)
1 0 .. 0
0 M(2, 1) ... M(2, n)

0 M(n, 1) ... M(n, n)

(iii) The inverse of operation (ii).

44 enables us to establish as an invariant the value at 1 of the characteristic

polynomial of the defining matrix:

45. Corollary [P. S'. I. If S, T are flow equivalent topological Markov chains

then XS(1) = XT(1).

Proof. In view of 37, we need only prove that the matrices M, M' in

operation (ii) satisfy X M(1) = X M,(1) . But
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X MP) = det(I - M') = det I -M(1, 1) -M(1, 2) ... -M(1, n)

0 -M(2, 1) 1-M(2, 2) ... -M(2, n)
(-11 0 ... 0

0 -M(n 1) -M(n 2) n1-M(_, , , )...

= det 1 1-M(1, 1) -M(1, 2) ... -M(1, n)
j-1 0 0 0

0 -M(2, 1) 1-M(2, 2) ... -M(2, n)

0 -M(n, 1) -M(n, 2) ... 1-M(n, n)

and, expanding by the first column,

X MP) = det(I - M) = X M(1) . /
That many topological Markov chains cannot be flow equivalent follows from 45.

For instance, if m # n then the full m-shift and the full n -shift are not flow

equivalent.

Let S be an n x n integral matrix and let A be an Abelian group. S acts
as a homomorphism of An into itself by

In
S(a) = S al = I S(1, j) a.

j=1 .

n
a

n I S(n, j) a.
j=1

Put FixS(A) a E An : S(a) = a }. The following is a direct consequence of 44:

46. Corollary [B. F. 1. If S, T are flow equivalent topological Markov

chains then for each Abelian group A, FixS(A) and FixT(A) are isomorphic

groups.

47. Exercise. Let S denote the transpose of the integral matrix S. Let

A be an Abelian group. Show that the groups FixS(A) and FixS*(A) are iso-

morphic.

The invariants of flow equivalence provided by 45 and 46 fail to distinguish

between topological Markov chains and their inverses. Thus the following problem

remains. Are topological Markov chains flow equivalent to their inverses? A

possible (though unlikely) way of answering this question is to extend 46 to Abelian
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semi-groups under the assumption that S is non-negative and irreducible. That

irreducibility is necessary can be seen from the following example:

Let S = ( 1
0

1
2) and let A be the Abelian semi-group of non-negative integers

under addition. Then

FixS(A) _ {(b) :(b =(0 2)(b) =(2b) {(0) CA}

whereas

Fixs*(A) = { (b) (b) _ (1 2) (b) _ (
aa+2b) } _ {(O) }

48. Remarks. (i) The work on subshifts of finite type was pioneered by

Hedlund's work on full shifts (see [H ']) . In addition to the papers mentioned in this

chapter, [C. P. ] and [M] contain important work on subshifts of finite type. For

the relationship between subshifts of finite type and Axiom A diffeomorphisms, see

[B. 11. Krieger, Cuntz and others have been pursuing the connection between

topological Markov chains and C -algebras (see, for instance, [K'], [ C'. K'. 11,

[C'. K'. 2], [C'. E. ]) .

(ii) Most of the theory in Sections 1, 3, 4 and 5 can be paralleled for Markov

chains and block-codes (see [. T. i ] and [P. T. 2]) . It is conjectured in [P. T. 1]

that the pressure invariants of 2. 31 and 4. 11 are complete invariants for finite

equivalence of Markov chains. A classification, by these pressure invariants and

period, analogous to 12 is, however, not possible (see the end of Section 5, Chapter

II). Kitchens [K] has recently obtained interesting results for zeta functions.
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APPENDIX: SHANNON"S WORK ON MAXIMAL MEASURES

We repeat 2.26 as

1. Theorem [P. 2]. Let (X, T) be a topological Markov chain. There is

a unique T-invariant probability m such that hm(T) > hA(T) for all T-invariant

Borel probabilities µ. m is Markov and is supported by X.

This result was proved in [P. 2] without the knowledge that Shannon had in-

cluded a similar theorem in his 1948 paper [S. W. ]. In this Appendix we interpret

the relevant parts of Shannon's paper to compare his theorem with 1. We will show

that Shannon proved:

2. Theorem. Let (X, T) be an aperiodic topological Markov chain. There

is a Markov probability m on X such that hm( T) hµ (T) for all (compatible)

Markov probabilities µ on X.

Comparing 2 with 1, we notice that in 2 µ is allowed to run through only

Markov probabilities. This (insignificant) restriction is natural since at the time

Shannon wrote, entropy had not been defined in general - in [ S. W. ] he defined it,

for the first time, in some special cases. More significantly, there is no explicit

uniqueness statement in 2.

All of Shannon's work is in the setting of (a model of) a communication

system and in fact he proves 2 for systems (superficially) more general than

aperiodic topological Markov chains. We consider Shannon's communication system

and state his theorem for such a system. Then we show that this theorem is equiva-

lent to 2, and prove it by Shannon's method.

Suppose we have a collection S = { s1, .. , s
n

of "symbols" and a

collection { a1, ..., am) (1 < m n) of "states". With each ai (1 < i < m)
associate a set S(a

1
.) C 8, of symbols that may be transmitted when we are in the

state ai. With each sj E S associate a state a(s.) E l al, .. , am ). Think of

a( as the state we are in after a transmission of sj. Each s. also has a
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number 1. EN, I
J
, ? 1, associated with it. 1, is the "length of sJ,,, or the "time

J J

taken to transmit sJ. ". A (finite) signal is a (finite) sequence (s. ) of symbols

such that a. E $(a(s, )). Strictly speaking, a finite signal is a starting state

1k+1
lk

a. followed by a finite sequence of symbols s. , s.12 , .. , a1.1 such that
1 11

si E S(ai) and, for 2 :sk 1 , s, E S(a(s. )). The space we are working with,
1 lk

lk-1

though not explicitly stated in [S. W. ], is that of all signals with the shift and the

topology generated by the finite signals.

The system described in the above paragraph is a discrete (noiseless) com-

munication system. This is the system Shannon defines and works with. His

definition is motivated by telegraphy:

In telegraphy there are, at "machine level", two distinct symbols - the line

open (for unit time) and the line closed (for unit time). For convenience we over-

look this and assume that (at a higher level) the symbols are:

(i) dot, consisting of line closure for unit time followed by line open for

unit time,

(ii) dash, consisting of three units of line closure followed by one unit open,

(iii) letter space, line open for three units,

(iv) word space, line open for six units.

The corresponding times of transmission are 2, 4, 3, 6. The only constraint is that

spaces may not follow each other. Thus, we have two states a1 and a2; 8(al )

consists of all symbols and $(a2) = {dot, dash 1. a(dot) = a(dash) = at (i. e. we

are in state a1 after the transmission of a dot or a dash) and a2 = a(letter space) _

a( word space) . This may be represented graphically as:

dash

letter space

word space

Take a discrete communication system with symbols S and states

{a1, ..., am 1. Accessibility of a state from another is defined in the obvious way.

We obtain an m X m 0-1 matrix A by putting A
1J
.. = 1 iff a

j
, is accessible from
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a
1
, in one step. We refer to A as the matrix of the system. The system is called

irreducible (reap. aperiodic) if its matrix is irreducible (resp. a periodic . From

now on we only consider aperiodic systems. This corresponds to the assumptions

made by Shannon on p. 17-18 of [S. W. ]. On aperiodic systems we shall consider

measures obtained from a set of transition probabilities P(s), s E 8,1 < i, j < M.
iJ

P(s) is the probability of passing from the state a, to a. (in one step) by trans-

mitting the symbol s.
P..

P(.s) is thus the probability of the state a. follow-
SES

ing a.. Of course, we assume that the probabilities are compatible with the system

i. e. that P(s) >0 iff s E S(a.) and a(s) = a.. It follows that P.. > 0 iff
1J 1 J 1J

A = 1. By irreducibility, the m X m stochastic matrix P has an invariant proba-

bility vector p, pP = p. We obtain an invariant Borel probability µ on the system

by defining, for a finite signal F = s1 ... sk starting at the state ail

µ(F) pi Pi 31) P(S2) ... Pick)
it 1 2

k-lik

where a1 . = a(sj) , 1 < j k. I (s) will denote the length of the symbol s.

For an (aperiodic) discrete communication system with symbols 8, states

{a1 , ... , a } and an invariant probability 1I given by the compatible { P( s)n 1J

the entropy (per unit time) is defined to be

- pip( js)log P(s)
1J

Hµ
p.

P( S)
l( S)

i,
j, s i 1J

Shannon's theorem is ([S. W. ], Appendix 4) :

3. Theorem (Shannon). For an aperiodic discrete communication system

there is a choice of compatible I P(s) I such that for the measure µ given by this
1J

choice H is maximal.µ

For a system in which all symbols have length 1,

p.P( S) (s) p P( s) _ p. P.. = 1
i, j, s 1

1J
i, j, s1

1J
i

j 1 1J

for any compatible {P(s) I. Thus in this case Hµ =-Z piPljs) log P(s) which is
i,j,s

(in today's terms) the entropy of the shift with respect to the "state partition", the

partition given by all possible pairs (ai, s) with s E S(ai) . Given any discrete
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communication system we may, by introducing new states along its symbols of

length greater than one, obtain an equivalent system in which all symbols have

length 1. In other words we may, and shall, restrict our attention to systems in

which all symbols have length 1. The following paragraph discusses the connection

between such systems and topological Markov chains; it should be clear from this

that 2 and 3 are equivalent.

If (X, T) is a topological Markov chain defined by the n x n irreducible 0-1

matrix A, then (X, T) may be regarded as a discrete communication system by

taking 11, ... , n I as symbols all of which have length 1 and a state for each

symbol. So there is no real distinction between states and symbols and Hµ defined

above reduces to the familiar H = - piPij log Pij for each Markov measure.
j

It may happen that some rows of A are identical, and we may wish to consider only

those Markov measures that are given by (compatible) matrices which preserve

this property. Discrete communication systems are precisely the structures that

cater for this; if {ii, ..., ik } C { 1 ... , n } are the ( indices of) identical rows

of A which we want to remain identical in any compatible stochastic matrix we con-

sider, we combine the associated symbols into a common state i. e. take

a(il) _ ... = a(ik) . The notation P(. s) is suited to this. Thus, discrete com-
a

munication systems in which all symbols have length 1 are just topological Markov

chains viewed in a way suitable for considering certain types of Markov measures.

For a finite signal in a discrete communication system, the length (or

"time of transmission") of the signal is the sum of the lengths of the symbols in the

signal. The capacity of the system is defined by

log N(t)C = lim
t

where N(t) is the number of finite signals of length t. When all signals have

length 1, this is just the topological entropy. We now proceed to Shannon's proof

of 3 in this case.

Lemma. Let A be an aperiodic non-negative n x n matrix and let 1 > 0

be its maximum eigenvalue. If { xk } is a positive sequence in llin satisfying

= ck' then there is an eigenvector r = (r(1) , ..., r(n)) tr correspon-
xk+1

ding to b such that lim (1)

k
= 1 for i = 1, ..., n.

k-° °° r(i)1$
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Proof. Write B = M -1 1AM where B is the Jordan canonical form of A.

Since 1 is a simple eigenvalue, we may assume B = h J1
O where each

O 'JM
ii = a 1 a 1

0
\ for some eigenvalue a = al # U. Since A is aperiodic,

A
.hl
a / -1

this means I a I < I . Put yk =M x k. Then yk+1 =
Byk' Writing

yk = (yk ) ' yki)
ykm)) tr where the length of yk0) is 1 and the length of

each yki) (1 i :5m) is the column (row) length of Ji, we see that

y(k+l = Jyk H Ji is r X r and corresponds to the eigenvalue a # 0, it can be

checked that (i)yk must be a linear combination of the columns of the r x r matrix

ak (k ak-1 (k) ak-2 ( k) ak-r+l
1 2 r-1

0 ak ak-1 ( k) k-r+2
r-2

0 0 ak (r
k ak-r+3
-3)

k
0 0 0 a

if Ji corresponds to a = 0, yki) is eventually the zero vector. Since I a I<

now writing yk = (yk(1) , .., yk(n)) tr, we have lim (yk(i) /bkk) =0 for
k-+oo

2 < i n. Hence

lim (xk/I ) = lim (Myk/I ) = M(c, 0, . . , 0) tr
k-. oo k -+oo

for some non-zero constant c and the result follows from this. /

Lemma ([S. W. ], Appendix 1). For an aperiodic discrete communication

stem (whose symbols all have length 1) with matrix A, the capacity is C = log 1

where h >0 is the maximum eigenvalue of A.

Proof. Let {al, .. , an
1 be the states of the system. Let N

1
.(L) be the

number of finite signals of length L that start at the state a
1
.. We put

N(L) = (N1(L) , ..., N
n
(L)) tr. Since all symbols have length one, N(L+1) = AN(L).

By the preceding lemma we can find an eigenvector (r(1) , ..., r(n)) tr corres-
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Ni(L)
ponding to h such that, for 1 < i < n we have L -0 l as L - oo . Thus,

r(i) 1
n n

C = lim 1 log( N. (L)) = lim !-log( r( i) log
i=1 1 L-.ooL i=1

If µ is the measure given by the compatible set of transition probabilities

{ P
s) 1, put Gk =- k 1 µ(B) log µ( B) where the sum is over all finite signals B

J Bi log N(k)of length k. Then Gk-n Hµ as k Now simply note that Gk <

where N(k) is the number of finite signals of length k, to obtain Hµ < C. This

establishes C as an upper bound for the entropies.

If the n X n matrix A is the matrix of the system and N > 0 is the maxi-

mum eigenvalue of A with corresponding strictly positive eigenvector

r = (r(1) , .. , r(n)) tr, define the compatible probabilities Pi(is) by

P(s) 0 if s ' S(ai) or a # a(s)
iJ

1 otherwise .Pr(i)

Then - piPl3s) log P( S) = log b = C and this completes the proof of 3 by

Shannon's method.
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